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Implicit Learning of Nonlocal Musical Rules: Implicitly Learning More
Than Chunks

Gustav Kuhn and Zoltan Dienes
University of Sussex

Dominant theories of implicit learning assume that implicit learning merely involves the learning of
chunks of adjacent elements in a sequence. In the experiments presented here, participants implicitly
learned a nonlocal rule, thus suggesting that implicit learning can go beyond the learning of chunks.
Participants were exposed to a set of musical tunes that were all generated using a diatonic inversion. In
the subsequent test phase, participants either classified test tunes as obeying a rule (direct test) or rated
their liking for the tunes (indirect test). Both the direct and indirect tests were sensitive to knowledge of
chunks. However, only the indirect test was sensitive to knowledge of the inversion rule. Furthermore,
the indirect test was overall significantly more sensitive than the direct test, thus suggesting that
knowledge of the inversion rule was below an objective threshold of awareness.
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People often learn about rules and regularities solely through
being exposed to stimuli that follow a particular structure, and
they apply this knowledge with little or no conscious awareness
(Cleeremans, Destrebecqz, & Boyer, 1998). This form of learning
is known as implicit learning and is thought to play a major role in
different areas of human cognition, such as language acquisition
(Saffran, Newport, Aslin, Tunick, & Barrueco, 1997), social con-
text (Lewicki, 1986), and the perception of music (Bigand, Per-
ruchet, & Boyer, 1998; Dienes & Longuet-Higgins, 2004 Till-
mann, Bharucha, & Bigand, 2000). Although implicit learning has
been investigated using a wide range of paradigms, the artificial
grammar-learning task has been the most frequently used task. In
a typical artificial grammar-learning task, participants are asked to
memorize a set of letter strings that have been created by a
complex set of rules. After the memorization phase, participants
are then presented with a new set of letter strings that contain
grammatical and ungrammatical items and are asked to classify
them according to whether they follow the rules. Although partic-
ipants are usually unable to describe the type of rule they use to
classify the test item (Reber, 1989) and often claim that their
responses are guesses (Dienes, Altmann, Kwan, & Goode, 1995),
they are able to discriminate between grammatical and ungram-
matical items. One of the key questions in implicit learning has
focused on the way in which the grammar is represented and the
type of mechanism or models that could account for this type of
learning.

Reber (1967) initially claimed that participants’ knowledge of
the grammar takes the form of abstract rules that are independent
and distinct from the encoding episode. Instance-based models of
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implicit learning, on the other hand, suggest that the knowledge
acquired in artificial grammar learning takes the form of relatively
unprocessed learning items, in the form of whole exemplars of the
training items (Brooks, 1978; Brooks & Vokey, 1991; Vokey &
Brooks, 1992) or parts of the exemplars (i.e., chunks; e.g., Dulany,
Carlson, & Dewey, 1984; Perruchet & Pacteau, 1990; Servan-
Schreiber & Anderson, 1990), rather than abstract rules. Of these
instance-based models, fragment models have become the most
popular. Fragment models suggest that learning involves the ac-
quisition of knowledge about the co-occurrences of adjacent let-
ters, also known as chunks. Initial evidence supporting this ap-
proach came from a study by Dulany et al. (1984), in which
participants were asked to memorize grammatical letter strings,
after which they were presented with a set of grammatical and
ungrammatical letter strings. In addition to their classification
responses, participants were asked to underline the part of the letter
string they thought made it grammatical or ungrammatical. These
results showed that participants’ classification responses were
fully accounted for by their knowledge of the permissible letter
chunks, thus suggesting that participants merely learned about the
co-occurrence of adjacent letters rather than acquired a more
abstract representation of the finite-state grammar. Subsequently,
several studies have also shown that people learn letter string
chunks (e.g., Dienes, Broadbent, & Berry, 1991; Mathews et al.,
1989; Perruchet & Pacteau, 1990).

Further support for the fragmentary approach has come from
studies in which participants are trained on fragments of the
training items rather than the entire items. If participants’ knowl-
edge merely takes the form of fragments, there should be no
difference in the classification performance between participants
trained on the letter string fragments compared with those trained
on the entire letter strings. Perruchet and Pacteau (1990) showed
that grammaticality judgments for participants who studied gram-
matical letter strings differed only a small degree from those
learning from a list of bigrams making up these letter strings (see
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also Manza & Reber, 1997, Exp. 5). Few authors would reject the
view that chunks play an important role in artificial grammar
learning. The question we must ask is whether chunks of adjacent
elements are sufficient to account for all implicit learning, as
suggested by several popular computational models of implicit
learning (Boucher & Dienes, 2003; Perruchet & Vinter, 1998;
Servan-Schreiber & Anderson, 1990). For example, the competi-
tive chunker (E. Servan-Schreiber & Anderson, 1990) postulates
that learning is a form of chunking mechanism, in which gram-
maticality judgments are based on a hierarchical network of
chunks that, by virtue of having been created from grammatical
strings, implicitly encode grammatical constraints. Once exposed
to the training items categorization, decisions are made on the
basis of the chunk strength. Knowlton and Squire (1994) have
formalized the chunk strength in a statistic they call “associative
chunk strength” (ACS), which is defined as the frequency with
which a chunk occurred in the training set, with the frequency
scores averaged across all different chunks. Test items with a high
ACS should, therefore, be classified as grammatical and items with
lower ACS as ungrammatical.

Several studies have looked at the way different types of knowl-
edge influence people’s classification responses, by generating test
items in which the test strings’ adherence to the finite-state gram-
mar and their association in terms of ACS is manipulated inde-
pendently. Even though ACS has been shown to account for much
of participants’ classification performance (Knowlton & Squire,
1994, 1996; Meulemans & Van der Linden, 1997), these studies
also found independent effects of both rule knowledge' and ACS.
In Meulemans and Van der Linden’s study (1997), great care was
taken in balancing both grammatical and ungrammatical test items
in terms of global and anchor ACS. Anchor ACS refers to a
measure that calculates the frequency with which bigrams and
trigrams occur in the beginning and terminal positions. This addi-
tional measure was introduced after several studies had shown that
participants are particularity sensitive toward initial and terminal
bigrams and trigrams (e.g., Reber, 1989). After appropriate train-
ing, participants still classified above chance, implying that their
knowledge could not be accounted for by bigram and trigram
knowledge alone. These results were interpreted as showing that
participants acquired knowledge about the abstract structure of the
finite state grammar rather than merely knowledge about chunks.
However, in a follow-up study, Johnstone and Shanks (1999)
demonstrated that, even though the material used was balanced in
terms of ACS, information about the legal position of trigrams was
ignored. Furthermore, a regression analysis, in which different
string familiarities were used to predict participants’ classification
responses, revealed chunk familiarity rather than grammaticality as
a reliable predictor.

In the sort of finite-state grammars that have typically been used
in the artificial grammar-learning literature, the regularities of
bigrams and trigrams are unavoidably closely linked to the actual
finite-state grammar, making it very difficult to isolate the contri-
butions of both rule and chunk knowledge. As shown by Johnstone
and Shanks (1999), even if great care is taken in designing material
that is perfectly balanced in terms of some measure of ACS, closer
inspection of the material is likely to lead to further n-gram
measures in which the material is not balanced. Although ACS
appears to be a reasonable statistical measure of association, we
cannot assume that this measure directly reflects the computational

KUHN AND DIENES

processes in the human mind. For example, the letter string frag-
ment 7V will be noticed more easily than others, which suggests
that this fragment will have a disproportionate influence on par-
ticipants’ discrimination performance. We, therefore, cannot as-
sume that all fragments are equally encoded. Furthermore, to date
there are several chunking models of implicit learning that vary in
the exact computational process used (Boucher & Dienes, 2003;
Perruchet & Vinter, 1998; E. Servan-Schreiber & Anderson,
1990). Moreover, the performance of each of these models is also
influenced by the parameter values used (see Boucher & Dienes,
2003). Given these variations, it should become apparent that
merely balancing the test material in terms of ACS is not a fully
satisfactory approach to evaluate whether the knowledge acquired
in artificial grammar-learning tasks can be fully accounted for in
terms of chunks. Although the material may be balanced in terms
of ACS, other potential chunk statistics could be used for correct
discrimination.

Chunking models are very good at learning local dependencies
but cannot learn nonlocal dependencies, such as the initial A in the
letter string AXXB predicting the B in the fourth position, if the
intervening material has not been encountered. One way of dem-
onstrating that chunking models cannot account for all implicit
learning would be to illustrate that people can implicitly learn
nonlocal dependencies that are independent of the chunks. One
such rule is the biconditional grammar designed by Mathews et al.
(1989), in which rules determine the relationships between non-
neighboring letters in a letter string. Several studies have shown
that, although people can learn the nonlocal dependency under
intentional learning instructions, they failed to learn it under inci-
dental learning conditions (Johnstone & Shanks, 1999; Mathews et
al., 1989; Shanks, Johnstone, & Staggs, 1997). Furthermore, John-
stone and Shanks (2001) demonstrated that participants in inciden-
tal learning conditions merely learned about chunks.

However, there is evidence suggesting that, under certain condi-
tions, people can learn nonlocal dependencies. Investigations in arti-
ficial language learning, in which participants are exposed to streams
of syllables or tones that followed a nonlocal rule, have shown that,
although people usually learn local dependencies more easily, under
certain conditions nonlocal dependencies are learned more readily
than local dependencies (Creel, Newport, & Aslin, 2004; Gomez,
2002; Newport & Aslin, 2004). However, in these studies, the role of
awareness was never directly assessed, therefore leaving open the
questions as to whether knowledge was explicit or implicit.

Artificial grammar learning has been predominantly investi-
gated in the visual modality, and relatively few studies have
directly examined implicit learning of music (Altmann, Dienes, &
Goode, 1995; Bigand et al., 1998; Dienes & Longuet-Higgins,
2004; Kuhn & Dienes, in press). This seems rather surprising,
because learning to perceive structures in music prima facie seems
sometimes to occur implicitly. Any nonmusician can spend his or
her entire life appreciating music without ever having to explicitly
learn about music theory. However, even though he or she may be
unaware of the musical grammar, some knowledge about a musical
grammar is essential for the aesthetic appreciation of music (Smith
& Witt, 1989). Furthermore, many aspects of these grammars are

! Rule knowledge referred to knowledge about the finite-state grammar
that was independent of the bigram and trigram structure.
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learned through a process known as acculturation (Frances, 1988;
Krumhansl et al., 2000; Tillmann et al., 2000). With regard to the
questions addressed here, the way in which musical grammars are
learned implicitly is of particular interest, because many of these
grammars are based on nonlocal dependencies and in many cases
take the form of algebraic rules, or what Marcus (2001) refers to
as operations over variables.

One such grammar underlies 12-tone music, or serialism, a
compositional technique introduced by Arnold Schoenberg in the
1920s (see Schoenberg, 1941). According to this method, all 12
pitch classes are placed in a particular order. This tone series forms
the basis of the composition, which is transformed using transpose,
inversion, retrograde, and retrograde inversion. The aesthetic ap-
preciation of serialist structure depends on (consciously or uncon-
sciously) recognizing the transformations of the original tone
series. If people can learn these rules implicitly, it would imply
that they had learned a rule that cannot be accounted for by
chunking models of implicit learning. Dienes and Longuet-Higgins
(2004) showed that people with a special interest in serialist music
could implicitly learn serialist transformations. However, because
both the training and the test items had several chunks in common,
a chunking mechanism could potentially learn to discriminate this
type of material. Nonetheless, using a regression analysis, it was
shown that participants’ knowledge about the transformations was
independent of chunks, thus providing tentative evidence that implicit
learning of musical structures can go beyond learning chunks.

Kuhn and Dienes (in press) investigated the differences between
incidental and intentional learning of a musical rule, a diatonic
inversion. An inversion turns the intervals of an original tone series
upside down, thus changing its contour without changing the
magnitude of the intervals. Figure 1 shows an example of one of
the tunes used. All tone series consisted of eight notes, selected
from the C-major scale (Cs, D,, Es, Fs, Gs, A, B,, C,).2 The first
four notes could be picked pseudorandomly, and the last four
formed the inversion. From Figure 1 it can be seen that the
inversion has the same number of diatonic steps but in opposite
direction. The advantage of using this type of rule over the normal
finite-state grammars is that the rule can be manipulated indepen-
dently from the bigrams. This rule is a type of biconditional
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Figure 1. Example of a grammatical training tune. The tune is repre-
sented in terms of the diatonic and the chromatic intervals and pitch.
Grammatical and ungrammatical tunes differed by two diatonic intervals
and two pitches. However, these tunes were compared with each other with
regard to associative interval strength and associative pitch strength, which
were calculated as described in Experiment 1. There was no significant
difference in first-order frequency of intervals between the grammatical
(M = 53.0, SD = 8.74) and the ungrammatical (M = 52.7, SD = 6.39),
#(42) < 1, and no significant difference in associative pitch strength for
grammatical (M = 126.5, SD = 11.9) and ungrammatical (M = 126.4,
SD = 105), 1(42) < 1.
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grammar because each of the second set of tones or intervals is
determined by a mapping from a corresponding tone or interval
from the first set. Kuhn and Dienes showed that, although this
inversion rule could be learned intentionally, incidental learning
merely led to learning chunks. The incidental learning condition
used in these experiments was analogous to the incidental learning
conditions in the biconditional grammar-learning experiments
(Johnstone & Shanks, 2001; Mathews et al., 1989; Shanks et al.,
1997). In the following experiments, a similar inversion rule was
used. However, participants were exposed to a larger repertoire of
training tunes, which may enhance rule learning (cf. Bishop,
1996). The aim of the experiments was to establish the type of
features participants could learn through exposure to grammatical
tunes by assessing their knowledge on different sets of test tunes.
These test sets were designed by manipulating the type of knowl-
edge that was required to distinguish between grammatical and
ungrammatical tunes. In particular, the tunes in one of the test sets
was created from bigrams that never occurred in the training set.
Any learning mechanism that is solely based on learning chunks of
adjacent elements would, therefore, fail to deal with this type of
material. Comparing participants’ performances on these different
test sets would then reveal the type of knowledge they acquired.

One of the major problems in the implicit learning literature is
how to measure implicit or unconscious knowledge. Knowledge of
some content is unconscious if one knows the content but is not
conscious of knowing it (Rosenthal, 2002). If one were not con-
scious of knowing some content, one would not verbally report
using it. Thus, participants’ failure to report the grammar has been
used to justify that the knowledge acquired was implicit (Reber,
1989). However, the use of verbal recall to assess participants’
explicit knowledge has been criticized by many authors on the
grounds that it is an insensitive and incomplete measure of partic-
ipants’ awareness (see Berry & Dienes, 1993 Dulany et al., 1984;
Shanks & St. John, 1994). Subsequently, several more stringent
criteria of awareness have been proposed. Subjective measures of
the conscious status of knowledge states test whether participants
are conscious of being in knowledge states by directly asking them
to report what mental state they are in. Two such criteria that can
be used: the guessing and the zero-correlation criteria (see Dienes,
2004; Dienes & Perner, 2004). According to the guessing criterion,
knowledge is implicit if participants perform above chance when
they believe they are guessing (Cheesman & Merikle, 1984;
Dienes et al., 1995). The guessing criterion implies that there is
implicit knowledge without ruling out the possibility that there is
explicit knowledge on the nonguessing trials. The explicit compo-
nent of people’s knowledge can be measured using the zero-
correlation criterion. For the zero-correlation criterion, partici-
pants’ classification performance is plotted against confidence
ratings, which are obtained after each response. If participants’
classification performance improves with increasing confidence
(positive slope), we can claim that participants are aware of the
epistemic status of their mental states and hence have metaknowl-
edge about their knowledge. However, if there is no such relation-
ship, participants do not know when they know and when they are
guessing, and hence their knowledge is implicit (see also Dienes &
Altmann, 1997; Dienes et al., 1995; Dienes & Longuet-Higgins,

2 C, refers to the middle C and C, to the C one octave above.
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2004; Kelley, Burton, Kato, & Akamatsu, 2001; Newell & Bright,
2002; Tunney & Shanks, 2003).

Another approach uses the following logic. If I am conscious of
knowing some content, I will certainly be able to express that
content when directly asked for it. If I am not conscious of
knowing some content, it may or may not be elicited when directly
asked. However, it must be used in some way to count as knowl-
edge. Presumably, it will be used to perform the task for which the
system acquiring the content was adapted. In sum, unconscious
knowledge might express itself more sensitively on an indirect
rather than a direct test but conscious knowledge will always
produce performance on a direct test at least as good as that on an
indirect test (e.g., Reingold & Merikle, 1988, 1993; Shanks & St.
John, 1994). Finding better performance on an indirect rather than
a direct test is known as the objective threshold criterion of
unconscious knowledge; direct tests are tasks in which participants
are explicitly instructed to discriminate stimuli according to the
distinction in question (e.g., grammatical vs. ungrammatical), and
indirect tests make no reference to the distinction in question (e.g.,
possibly liking ratings; Zajonc, 1968).

It is difficult to predict in advance whether unconscious knowl-
edge will express itself on a direct test. If knowledge is expressed
on a direct test, one can test its conscious or unconscious status by
the use of subjective measures, like the guessing and zero-
correlation criteria. If knowledge does not express itself on a direct
test, it still might express itself on an indirect test specially chosen
to be the sort of test relevant to the expression of that sort of
knowledge in ecological contexts.

Numerous studies have shown that unreinforced exposure to a
stimulus leads to an increase in positive attitude toward that
stimulus (e.g., Bornstein, 1989; Zajonc, 1968). Similarly, it has
been shown that if participants have knowledge about structures,
this leads to an increase in liking for items that have the same
structure (Gordon & Holyoak, 1983; Manza & Reber, 1997; New-
ell & Bright, 2003; Whittlesea & Price, 2001). Because partici-
pants are merely asked to rate items according to how much they
are liked, no reference is made to the grammaticality distinction;
thus, liking ratings fulfill the criterion of being an indirect test.
Further, the reaction that people habitually produce to music is to
both feel and express how much they like it. If knowledge of
musical structures (unlike letter string structures) will express
itself in any way, it plausibly will express itself in terms of an
aesthetic judgment (e.g., Meyer, 1903; Peretz, Gaudreau, & Bon-
nel, 1998; Verveer, Barry, & Bousfield, 1933; Wilson, 1979). In
the current experiments, an increase in positive affect for gram-
matical as opposed to ungrammatical items, resulting from expo-
sure to grammatical training tunes, was used as evidence for the
existence of knowledge about the training tunes. Participants’
awareness of this knowledge was then measured using a direct test,
in which they were asked to make classification responses fol-
lowed by confidence ratings. Knowledge was claimed to be un-
conscious if either of two criteria were met. First, participants in
the experimental group performed no better than chance, or the
control group, and the indirect test was more sensitive than the
direct one (Reingold & Merikle, 1988); this is sometimes called
the objective threshold of conscious awareness (Cheesman &
Merikle, 1984). Second, if performance on the direct test was
above chance, confidence ratings were used to measure partici-
pants’ awareness of having knowledge (sometimes called the
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subjective threshold of awareness; Cheesman & Merikle, 1984).
Although the two criteria—subjective and objective—are referred
as different thresholds, they are simply different methodological
ways of measuring whether a person has knowledge that they are
not aware of having.

Experiment 1A

The aim of Experiment 1A was to establish whether participants
would become sensitive toward the regularities in the training
tunes by measuring their knowledge on an indirect test. After
listening to a series of grammatical tunes (i.e., tunes instantiating
an inverse), participants were asked to rate how much they liked
the new set of tunes. Any effect of grammaticality on participants’
liking ratings would indicate that they had acquired some form of
knowledge about the structure of the training tunes. Three different
test sets were designed singling out different cues that could be
used to discriminate between grammatical and ungrammatical
tunes. In the first set (exemplar), grammatical tunes were taken
from the training set, whereas all ungrammatical tunes were novel
and consisted of bigrams, which rarely occurred in the training set
(low ACS). Any sensitivity toward the grammaticality in this set
could result from knowledge about the unprocessed training items,
knowledge about chunks, or knowledge about the inversion rule.
In the second set (fragment), all test tunes were novel. However,
the grammatical tunes were generated from a set of n-grams, which
occurred more often in the training phase than did the n-grams for
the ungrammatical tunes. Because all the tunes used in this set
were novel, any sensitivity toward the grammaticality could no
longer be attributed to knowledge about whole items and must,
therefore, be due to knowledge about the ACS or knowledge about
the inversion rule. The final set (abstract) was designed to establish
whether learning could go beyond the learning of adjacent ele-
ments. Both grammatical and ungrammatical tunes were generated
from a novel set of bigrams, none of which ever occurred in the
training phase. Any sensitivity toward the grammaticality could no
longer be due to knowledge about fragments and would indicate
that participants’ knowledge went beyond the learning of chunks.

Because of the nature of the material, it is possible that certain
tunes sounded more pleasing than others regardless of the training.
This problem was circumvented by comparing the experimental
group’s ratings with those of a control group, whose procedure
only differed in that they were not exposed to the training tunes.

Method

Participants. Ninety-six individuals from the University of Sussex
took part in the experiment. Participants in the experimental group were
paid £4, and those in the control group were paid £3. None of the
participants had previously taken part in any implicit learning experiments.
Participants were randomly allocated to either the experimental or control
group, with an equal number allocated to each group.’

Materials. One of the most salient features of music is that of pitch,
because it allows for the creation of melodies. The perception of music

3 There was no difference in musical experience between participants in
the control group and the experimental group, x> = 0.67, p = .27. Musical
experience was defined in terms of whether participants had more than 3
years of formal music education.
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Table 1
Mean ACS and MFF for Grammatical and Ungrammatical Tunes for the Exemplar and the Fragment Set in Terms of Diatonic
Intervals, Pitches, and Chromatic Intervals
Pitch Diatonic interval Chromatic interval
G UG G UG G uG
Test set and statistic M SD M SD M SD M SD M SD M SD
Exemplar MFF 118.90 13.40 116.10 7.87 49.13 3.69 49.66 5.59
Exemplar global ACS 11.37¢ 3.46 8.92 2.75 11.19% 0.87 3.34 1.77 5.85% 1.06 1.78 1.39
Exemplar anchor ACS 2.17* 0.53 1.33 0.60 2.35% 0.53 0.42 0.40 2.52° 0.72 3.87 0.77
Fragment MFF 125.80 12.60 120.70 6.39 51.70 8.46 50.50 7.76
Fragment global ACS 14.13* 3.46 9.12 3.01 8.81% 1.61 3.09 1.44 4.86" 1.24 1.73 0.82
Fragment anchor ACS 2.29% 0.80 1.44 0.83 1.23% 0.69 0.40 0.43 6.58* 0.96 8.62 0.71

Note.

G = grammatical; UG = ungrammatical; MFF = mean feature frequency; ACS = associative chunk strength.

# Significant difference between the grammatical and the ungrammatical items, p < .05.

relies on many different perceptual dimensions, such as timbre, loudness,
rhythm, and pitch, all of which are combined to form a particular piece of
music. However, for the purpose of this article, only the pitch dimension is
relevant, because grammaticality is defined in terms of the tune’s pitches,
and all other factors are held constant. When memorizing a tune, people do
not merely represent the melody as a series of independent pitches. They
tend to become sensitive toward the distance between two notes, which can
be measured by the chromatic interval (see Cross, 1997; Krumhansl, 1991;
Longuet-Higgins, 1987; Shepard, 1982). The pitch distance between one
note and the next nearest note is called a semitone. The distance between
a C and a G is, therefore, seven semitones. A melody can thus be
represented as both a sequence of pitches and a sequence of chromatic
intervals. Our experience of music is also influenced by musical schemas,
such as tonal scales. These schemas guide us as to what aspect of the
melody we remember. In Western music there are two main scales: major
and minor. In the C-major scale, all notes are one tone apart (one tone =
two semitones) except for E-F and B—C, which are one semitone apart. The
C-major scale, therefore, consists of seven different notes, and the distance
between two notes is called a diatonic interval. The distance between C and
G would therefore be +4. A further feature that is of particular importance
is the contour, or the pattern of ups (+) and downs (-) of pitches from one
note to the other (see Dowling & Harwood, 1986).

The material was designed so that chunking statistics were manipulated
independently from the actual structural rule, which in this case was
characterized by the diatonic inversion. The rule referred to the actual
inversion rules that constituted the grammar to be learned, whereas frag-
ment knowledge was defined in terms of pitches, diatonic and chromatic
interval, and contour. Because simple melodies can be represented in so
many different ways, great care was taken to control all the just-mentioned
stimulus dimensions.

The grammar used was an inversion rule, similar to that used by Kuhn
and Dienes (in press). All tunes consisted of eight notes, which were
selected from the C-major scale. These notes can be numbered from 1 to
8 (pitch number): C; = 1; D; = 2; E; = 3; F; = 4;,G; = 5; A; = 6; B; =
7; C, = 8, where C; is middle C. The first four notes formed the prime and
were selected semirandomly, whereas the last four notes formed the inver-
sion, which was created by subtracting the pitch number from a constant
(9). The prime 3 6 4 3 leads to the following inversion 6 3 5 6, and the tune
364 3-6356. In terms of diatonic intervals, the tune is defined as +
3-2-1 +3-3+2+ 1.

We constructed 120 different grammatical training tunes. These tunes
were created from a unique set of interval bigrams, ensuring that a new set
with different interval bigrams could be designed.* Care was taken to
balance the contour patterns. The following contour patterns each occurred
20 times as a prime ++—, -+, +—+, —+-, +—, and —+.

Three different sets of test tunes were created, which differed in the way
they were associated with the training set. For the exemplar set, 12 tunes
were selected from the training set, which formed the grammatical tunes.
Twelve ungrammatical tunes were created that violated the inversion rule
in both the interval magnitude and contour. Care was taken to ensure that
grammaticality was not correlated with first-order frequency of the diatonic
intervals. Diatonic intervals occurred the same number of times in each
position (e.g., the interval +4 occurred twice in Position 2 for both
grammatical and ungrammatical items). Furthermore, a new statistic called
mean feature frequency (MFF) was created to ensure that grammatical and
ungrammatical tunes were balanced in terms of pitch and chromatic inter-
val first-order frequency. MFF was calculated for each tune by averaging
the number of times each pitch class (or chromatic interval) occurred in the
training set in each of the eight positions. Table 1 shows the MFF for
grammatical and ungrammatical tunes in terms of pitches and chromatic
intervals. From Table 1 it can be seen that there was no significant
difference in MFF between grammatical and ungrammatical tunes. There
was no need to calculate MFF in terms of diatonic intervals, because
grammatical and ungrammatical tunes were created from identical diatonic
intervals. The ungrammatical tunes were created by using interval combi-
nations (bigrams) that rarely, or never, occurred in the training set. Table
1 shows ACS statistics for diatonic intervals, pitch classes, and chromatic
intervals. It can be seen that, apart from chromatic interval anchor ACS,
grammatical items had significantly higher ACS statistics than the ungram-
matical items. Care was taken that both grammatical and ungrammatical
tunes had exactly the same number of contour bi- and trigrams (adjacent
contours, e.g., ++, +—+)

For the fragment set, 12 novel grammatical tunes were created with both
high global and anchor ACS. The 12 ungrammatical tunes were created
using the same rationale as in the exemplar set. Diatonic intervals occurred
the same number of times in each position as the grammatical items. Table
1 shows that there was no significant difference in MFF statistics either in
terms of pitches and chromatic intervals. However, apart from the chro-
matic interval anchor ACS, the ACS statistics for all other measures were
significantly higher in the grammatical compared with the ungrammatical
items.

For the abstract set, both grammatical and ungrammatical tunes were
created from a novel set of interval bigrams,” which never occurred during
the training phase. This meant that none of the tunes had any bigrams in

4 See http://www lifesci.sussex.ac.uk/home/Gustav_Kuhn/Kuhn_DienesJEP_
LMC2006/index.htm

5 Using novel interval bigrams meant that pitch bigrams were novel too.
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Table 2
Mean Liking Ratings Given for Grammatical and Ungrammatical Tunes for Each of the Three
Test Sets
Exemplar Fragment Abstract
G uG uG G uG

Group M SD M SD M SD M SD M SD M SD
Experimental 528 0.83 496 065 544 1.09 494 098 540 0.70 5.09 0.86
Control 520 081 513 079 496 081 510 086 539 076 563 0.58
Note. G = grammatical; UG = ungrammatical.

common with the training set, thus leading to zero ACS. This also applied
to pitch and chromatic interval representations. The ungrammatical tunes
violated the inversion rule both in their interval magnitude and contour. To
ensure that they did not differ in interval or pitch class first-order frequen-
cies, the ungrammatical tunes were created by using the same prime and
inversions as the grammatical tunes but changing the way in which they
were combined. Furthermore, they were combined in a way that ensured
that grammatical and ungrammatical tunes had the same number of contour
bi- and trigrams.®

The music notes (C;, D, Es, F;, G, A;, H; C,) were sampled (22.5
kHz) using a Yamaha P50 Sound Box (grand piano). The starting note
lasted 1,200 ms and remained the same for each tune (C5). The duration of
the other notes was 300 ms, except for the fourth and eighth tones, which
lasted 600 ms. This meant that the tunes were perceived as having a gap
between the prime and the inversion. The tunes were produced by concat-
enating these individual samples.

Application. The tunes were presented over a pair of headphones,
using a Power Mac. A computer program was written that presented the
tunes in a different random order for all participants and recorded their
keyboard responses.

Procedure. The experiment consisted of two parts: a training phase
and a test phase. Participants in the experimental group were informed that
they were taking part in a memory experiment. They were presented with
120 grammatical tunes and asked to memorize them as far as possible.
After each tune they were asked to indicate whether they thought the tune
had been played before by pressing the appropriate key. After the training
phase, participants were instructed that they were about to hear a new set
of tunes similar to the tunes they heard before. Participants were asked to
rate how much they liked them on a scale ranging from 1 to 9 (1 = do not
like it, 5 = indifferent, 9 = like it a lot). They were also encouraged to
make use of the full range of the scale. Participants in the control group
took part in the same test sets and were given the same instructions as the
experimental group but did not take part in the training phase.

Results

Table 2 shows participants’ mean liking ratings of both gram-
matical and ungrammatical tunes for each of the three sets. A
three-way analysis of variance (ANOVA) on liking ratings, with
group (experimental vs. control) and test set (exemplar vs. frag-
ment vs. abstract) as between-subjects variables and grammatical-
ity (grammatical vs. ungrammatical) as a within-subjects variable,
found no significant effect of grammaticality, F(1, 90) = 2.47,
MSE = 0.67, p = .12, no significant effect of group, F(1, 90) =
0.045, MSE = 0.047, p = .83, no significant effect of test set, F(2,
90) = 2.89, MSE = 1.45, p = .26, and no significant Group X Test
Set X Grammaticality interaction, F(2, 90) = 0.33, MSE = 0.089,
p = .72. However, there was a significant Group X Grammatical-

ity interaction, F(1, 90) = 11.68, MSE = 3.17, p = .001, whereby
the experimental group rated grammatical tunes more highly than
ungrammatical tunes, #(47) = 3.61, p = .001, but there was no
significant difference for the control group, #(47) = —1.32, p =
.20. Furthermore, planned post hoc analysis showed that in the
abstract set the experimental group rated grammatical tunes as
more likable than ungrammatical tunes, #(47) = 3.61, p = .001,
whereas no such difference was found in the control group, #(47) =
—-132,p = 2.

Discussion

The results from Experiment 1A showed that exposure to the
training tunes led to an increase in liking for grammatical tunes
versus ungrammatical tunes. Participants in the experimental
group were, therefore, able to discriminate between grammatical
and ungrammatical tunes using liking ratings. Furthermore, the
nonsignificant Group X Test Set X Grammaticality interaction
showed that this effect was independent of test set. The fact that
there was no difference in mere exposure effect between these
three test sets implies that liking ratings were unaffected by ACS
or whether the tunes were identical to the training set. Further-
more, planned post hoc analysis showed that, in the abstract set,
the experimental group rated grammatical tunes as more likable
than ungrammatical tunes; no such difference was found in the
control group. These results imply that participants were able to
discriminate between grammatical and ungrammatical tunes even
when all test tunes were created from novel bigrams. However,
before concluding whether participants’ discrimination abilities
were due to implicit or explicit knowledge, participants’ awareness
of this knowledge must be assessed.

Experiment 1B

Experiment 1A showed that participants could discriminate be-
tween grammatical and ungrammatical tunes using liking ratings.
The aim of Experiment 1B was to establish participants’ levels of
awareness of this knowledge. Most studies that have investigated
the relationship between affective and classification judgments
have used memory rather than learning paradigms. Newell and
Bright (2001) used an artificial grammar-learning task in which

¢ A full list of the material can be found on http://www lifesci.sussex.ac.uk/
home/Gustav_Kuhn/Kuhn_DienesJEP_LMC2006/index.htm
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Table 3
Mean Classification Performances (Percentage of Correct Responses) for Each of the Three Test
Sets
Exemplar Fragment Abstract
Group M SD LCI UCL M SO LCI UCL M SD LCI UCL

Experimental ~ 56.8 102 513 622 589
Control 50.8 6.7 472 543 508

87 542 635 516 101 462 569
114 447 569 516 113 456 57.6

Note.

participants’ knowledge was assessed using both liking and rule
judgments. They showed that liking ratings were sensitive to
grammaticality (cf. Gordon & Holyoak, 1983; Manza & Bornstein,
1995). They also consistently showed rule judgments to be more
sensitive than liking ratings. However, Newell and Bright used
letter strings rather than melodies. In addition, whereas the every-
day function of music relates crucially to its aesthetic appeal, this
is not true of letter strings. Thus, it is possible that liking may be
a more sensitive measure of the learning of musical structures than
rule judgments.

The relationship between the mere exposure effect and individ-
uals’ awareness of the source of this effect is a matter of debate.
According to the misattribution theory (Bornstein & D’Agostino,
1992, 1994), the mere exposure effect for the repetition of old
stimuli arises from interpreting processing fluency as liking rather
than attributing it to the fact the item is old. Once the stimuli are
recognized, the perceptual fluency can be correctly attributed to
previous exposure, thus removing the increase in liking. The mere
exposure effect can, therefore, only occur as long as participants
are unaware of the source of the perceptual fluency, which is
supported by experiments showing a mere exposure effect in the
absence of recognition (e.g., Kunst-Wilson & Zajonc, 1980;
Seamon, Brody, & Kauff, 1983; Seamon, McKenna, & Binder,
1998). By this account, an increase in liking to grammatical stimuli
for musical inverses after training on inverses occurs as long as
people are not aware that the grammatical stimuli have the same
structure as the training stimuli.

The two-factor model, alternatively, assumes that the increase in
liking results from two opposing processes: habituation and
arousal (e.g., Berlyne, 1970; Lee, 2001). Unlike the misattribution
model, the two-factor model assumes the same knowledge can be
responsible for both recognition and liking performance (Lee,
2001). However, this does not necessarily imply that classification
performance must be above chance, because the knowledge could
be implicit rather than explicit (Bornstein, 1989), thus leading to a
mere exposure effect in the absence of recognition.

We will not specifically presume either theory. We merely
assume that the liking increase in Experiment 1A resulted from
sensitivity to either the inversion rule or a regular consequence of
it, and if the knowledge of this regularity is conscious, participants
asked to search for rules will use the knowledge in classification.

The material used in Experiment 1B was identical to that in
Experiment 1A. However, rather than using liking ratings, partic-
ipants’ knowledge was measured using a direct test. After the
training phase, participants were informed about the existence of a
rule and asked to classify accordingly. If the knowledge acquired
in Experiment 1A was below an objective threshold, then partic-

LCI = lower 95% confidence interval; UCL = upper 95% confidence interval.

ipants in the experimental group should not perform better than
chance or better than the control group.

After each classification, participants were also asked to rate
how confident they were about their decision. If participants’
discrimination performance is above chance, confidence ratings
are used to measure metaknowledge. The guessing and the zero-
correlation criteria were used to determine the explicit and implicit
components of this knowledge (see Dienes, 2004; Dienes & Per-
ner, 2001, 2004; and Dienes & Scott, 2005, for complementary
discussions of assumptions of using subjective measures of
awareness).

Method

Participants. Ninety-six individuals from the University of Sussex
took part in the experiment (48 in the experimental group, 48 in the control
group). Participants in the experimental group were paid 4 pounds, whereas
those in the control group were paid 3 pounds. None of the participants had
previously taken part in any implicit learning experiments. Participants
were randomly allocated to either the experimental or the control group.”
Material. This was identical to that used in Experiment 1A.
Procedure. The material and procedure for the training phase were
identical to those in Experiment 1A. However, after the training phase,
participants were informed about the existence of a rule used to generate
the pitches of all the tunes heard before. They were then asked to listen to
the new set of tunes, half of which were grammatical, and were asked to
classify the new set, by pressing the appropriate key, based on whether they
thought that these new tunes followed the same pattern or structure as the
tunes just memorized. After each classification, participants were asked to
rate how confident they felt about their decision, using a confidence rating
that ranged from 50% to 100% (50%, 51-60%, 61-70%, 71-80%, 81—
90%, 91-100%). Participants were explicitly informed that 50% confi-
dence meant a literal guess. Participants were then presented with one of
the three test sets. After the completion of this task, they were asked to
write down the strategy they used to classify the tunes. The procedure for
participants in the control group was the same as that of the experimental
group except that they did not take part in the training task (see Dienes &
Altmann, 2003, for a discussion of using an untrained control group).

Results

Classification performance. Table 3 shows the mean classifi-
cation performance for participants in the experimental and the
control groups for each of the three test sets.

A two-way ANOVA, with group (experimental vs. control) and
test set (exemplar vs. fragment vs. abstract) as between-subjects

7 There was no difference in musical experience between participants in
the control group and the experimental group, x> = 1.51, p = .15.
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variables, found a significant effect of group, F(1, 90) = 5.43,
MSE = 527.3, p = .022, but no significant effect of test set, F(2,
90) = 0.91, MSE = 88.4, p = .41, and no significant Group X Test
Set interaction, F(2, 90) = 1.45, MSE = 140.5, p = .24. Partici-
pants in the experimental condition, therefore, performed better
than those in the control group. Furthermore, the nonsignificant
Group X Test Set interaction implies that the difference between
the experimental and the control groups was not different for the
various test sets. However, the confidence intervals in Table 3
indicate that only participants in the experimental group performed
significantly above chance in the exemplar and fragment sets but
failed to do so in the abstract set. Furthermore, planned post hoc
tests showed that the experimental group performed significantly
better than the control group in both the exemplar set, #(30) = 1.97,
p = .029, one-tailed, and the fragment set, #(30) = 2.25, p = .032,
but there was no such difference in the abstract set, #(30) < 1.

Participants’ subjective awareness was only analyzed for con-
ditions in which learning was observed. The zero-correlation cri-
terion was analyzed by calculating the gamma correlation coeffi-
cient between confidence rating and classification performance for
each individual participant and averaging across participants. Al-
though there appears to be a difference between the gamma scores
on the exemplar (M = 0.054, SD = 0.48)® and the fragment (M =
0.34, SD = 0.33) sets, this difference was not quite statistically
significant, F(1, 29) = 3.84, MSE = 0.639, p = .06. The gamma
scores on the two test sets were, therefore, combined, which
revealed that they were significantly greater than zero, F(1, 29) =
7.27, MSE = 1.21, p = .01. According to the zero-correlation
criterion, participants’ knowledge of the grammatical status of
tunes differing according to the chunks in training tunes was,
therefore, at least partly explicit. Table 4 shows participants’
classification performance when they were guessing (50% confi-
dence rating). An ANOVA with group (experimental vs. control)
and set (exemplar vs. fragment) as within-subjects variables on
guessing scores showed no significant effect of set, F(1, 39) =
0.727, MSE = 385.3, p = .40, no significant effect of group, F(1,
39) = 0.096, MSE = 50.6, p = .75, and no significant Group X
Set interaction, F(1, 39) = 0.216, MSE = 114.4, p = 22. There
was, therefore, no evidence to suggest that participants in the
experimental group performed significantly better than the control
group.

Participants’ verbal descriptions of the strategies used to dis-
criminate the test tunes provided no valuable insight into their
declarative knowledge.

Table 4

Mean Classification Performance (Percentage of Correct
Responses) When Participants Were Guessing (50% Confidence
Rating) and the Number of Participants Who Were Included in
the Analysis

Experimental Control
Test set M SD N M SD N
Exemplar 56.8 16.6 14 56.2 20.4 16
Fragment 54.0 30.4 13 42.4 23.0 16

Note. Several participants were excluded because they never guessed.

KUHN AND DIENES

Discussion

The aim of Experiment 1B was to establish whether participants
could distinguish between grammatical and ungrammatical tunes
when they were explicitly asked to do so. The results showed that
participants in the experimental condition performed significantly
better than the control group. Post hoc inspection of the results
revealed that participants in the experimental group only per-
formed significantly better than the control group (and better than
chance) in the exemplar and the fragment sets. In the abstract set,
the experimental group performed at chance and no better than the
control group. Although the Group X Test Set interaction failed to
reach significance, these results could indicate that knowledge
about fragments and exemplars was above an objective threshold
of awareness, and knowledge used in the abstract set was possibly
below an objective threshold of awareness.

In the exemplar and the fragment sets, participants in the ex-
perimental group performed significantly better than chance and
the respective control group. Participants’ awareness was, there-
fore, analyzed with regard to their subjective level of awareness.
Because the experimental group performed no different from
chance or the control group on the abstract set, there was no point
in analyzing their classification responses. The explicit component
of participants’ classification performance was assessed using the
zero-correlation criterion. These results showed a positive zero-
correlation criterion on the exemplar and fragment sets, with no
significant difference between the two; thus, at least part of the
participants’ knowledge was explicit. The implicit component of
participants’ classification performance was assessed using the
guessing scores. This analysis showed that the experimental group
performed no different from the control group on either of the test
sets when they were guessing, thus providing no evidence to
suggest that their knowledge was implicit.

Experiment 2

The aim of Experiment 2 was to replicate the results found in the
abstract set in Experiments 1A and 1B and provide evidence that
knowledge of the inversion rule was implicit. Experiment 2 dif-
fered from Experiment 1 in using just the abstract set, and the same
participants were asked to make both rule and liking judgments for
the test tunes.

Method

Participants. Ninety-six individuals from the University of Sussex
took part in the experiment (48 experimental group, 48 control group).
Participants in the experimental group were paid 4 pounds, and those in the
control group were paid 3 pounds. None of the participants had previously
taken part in any implicit learning experiments. Participants were randomly
allocated to either the experimental or the control group.’

8 Data from 1 participant were excluded because this participant gave
identical confidence ratings for each response, thus preventing the calcu-
lation of a correlation coefficient.

9 There was no difference in musical experience between participants in
the control group and the experimental group, x> = 0, p = 1.
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Mean Liking Ratings Given for Grammatical and Ungrammatical Tunes, and the Mean
Classification Performance (Percentage of Correct Responses)

Liking ratings

G U Classification performance
Group M SD M SD M SD LCI UCL
Experimental 5.06 0.99 4.88 0.94 50.81 7.81 48.54 53.08
Control 5.11 0.76 5.18 0.72 51.91 6.36 50.06 53.76

Note. LCI = lower 95% confidence interval; UCL = upper 95% confidence interval; G = grammatical; U =

ungrammatical.

Material. Training material was identical to that in Experiments 1A
and 1B. Thirty-six test tunes were created by the same method as the
abstract set in Experiments 1A and 1B.'°

Procedure. The training procedure was identical to that in Experiments
1A and 1B. After the training phase, participants were given the liking test
used in Experiment 1A and the classification test from Experiment 1B. The
presentation order of the tests was counterbalanced across participants. The
procedure for participants in the control group was the same as that of the
experimental group except that they did not take part in the training phase.

Results

Liking ratings. Because there were no significant effects of
order on the liking ratings, the data were collapsed over this
variable. Table 5 shows participants’ mean liking ratings for gram-
matical and ungrammatical tunes.

A two-way ANOVA with group (experimental vs. control) as
between-subjects variable and grammaticality (grammatical vs.
ungrammatical) as within-subjects variable on liking ratings found
no significant effect of group, F(1, 94) = 1.12, MSE = 1.50, p =
.29, and no significant effect of grammaticality, F(1, 94) = 1.13,
MSE = 0.158, p = .29. However, there was a significant Group X
Grammaticality interaction, F(1, 94) = 5.65, MSE = 0.785, p =
.019. Participants in the experimental group rated the grammatical
tunes more highly than the ungrammatical tunes, #(47) = 2.48,p =
.017. However, there was no such difference for the control group,
1(47) < 1.

Classification response. Because there were no significant
effects of order on the classification responses, the data were
collapsed over this variable. Table 5 shows participants’ rule
judgment performance. The experimental group did not perform
significantly better than the control group, #(94) = —0.76, p = .45.
Surprisingly, the control group performed numerically better than
the experimental group. From the confidence intervals, it can be
seen that only the control group performed significantly better than
chance.

Discussion

Experiment 2 showed that exposure to the training tunes led to
an increase in liking ratings for grammatical relative to ungram-
matical tunes. Participants in the experimental group were, there-
fore, able to discriminate between grammatical and ungrammatical
tunes using affect ratings. However, when these participants were
explicitly asked to discriminate between grammatical and ungram-

matical tunes, they did not perform significantly better than a
control group nor significantly better than chance. In fact, the
experimental group performed numerically lower than the control
group, thus providing tentative evidence to suggest that partici-
pants’ knowledge was below an objective threshold of awareness.
So far we have demonstrated that people could learn an inver-
sion rule that was independent in terms of fragment knowledge,
defined in terms of statistical regularities of adjacent diatonic and
chromatic intervals and pitch classes. The inversion rule used in
this experiment was defined both in terms of the interval magni-
tude and the interval contour. Although great care was taken to
balance the test tunes in terms of contour n-grams, this was only
partially successful. Grammatical and ungrammatical tunes could
be broken down into identical contour bi-, tri-, and tetragrams.
However, the grammatical tunes had more higher order dependen-
cies (greater than tetragrams) in common with the training tunes.
With regard to contour n-grams with and above 5-g, grammatical
items (M = 30.0, SD = 2.28) had a substantially higher contour
ACS than the ungrammatical items (M = 11.5, SD = 1.23),
1(34) = 30.2, p < .0005. Previous work has shown that the contour
plays an important role in the recognition of tunes (Dowling,
1971). It, therefore, seems reasonable to suggest that participants
were influenced by contour cues. Before any definitive conclu-
sions can be made about whether implicit learning can go beyond
the learning of chunks, it is essential to rule out the possibility that
participants’ discrimination abilities were based on contour 5-g.

Experiment 3

The aim of Experiment 3 was to rule out the possibility that
participants’ discrimination abilities could be based on contour
information. The test material used in the following experiment
was created from a novel set of interval bigrams, just as in the
previous experiment. However, ungrammatical tunes violated the
inversion rule only in terms of interval magnitude rather than
contour. Grammatical and ungrammatical tunes, therefore, had the
same contour, thus excluding the possibility that this type of
knowledge could be used for the correct discrimination. This
material was thought to be more challenging than that used in the
previous experiments. Furthermore, Kuhn and Dienes (in press)

1A full list of the material can be found on http://www.lifesci.sussex.ac
.uk/home/Gustav_Kuhn/Kuhn_DienesJEP_LMC2006/index.htm
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Mean Liking Ratings Given for Grammatical and Ungrammatical Tunes and the Mean
Classification Performance (Percentage of Correct Responses)

Liking ratings

G U Classification performance
Group M SD M SD M SD LCI UCL
Experimental 5.20 0.75 5.08 0.71 50.47 6.09 48.70 52.24
Control 5.05 0.75 5.15 0.70 49.43 6.14 47.65 51.21

Note. LCI = lower 95% confidence interval; UCL = upper 95% confidence interval; G = grammatical; U =

ungrammatical.

showed that discriminating between grammatical and ungrammat-
ical tunes was much harder if the inversion rule is determined
purely in terms of the interval magnitude rather than the contour.
However, if learning can be observed on this type of material,
strategies based on learning adjacent chunks can be ruled out.

Method

Participants. Ninety-six individuals from the University of Sussex
took part in the experiment (48 experimental group, 48 control group).
Participants in the experimental group were paid 4 pounds, and those in the
control group were paid 3 pounds. None of the participants had previously
taken part in any implicit learning experiments. Participants were randomly
allocated to either the experimental or control group.''

Material. Training material was derived from that used in Experiment
2. Twenty-four ungrammatical tunes were created from the same set of
interval bigrams as in Experiment 2. The ungrammatical tunes were created
by exchanging the last four intervals between two tunes that had the same
contour pattern. This meant that grammatical and ungrammatical tunes
consisted of novel interval (chromatic and diatonic) and pitch n-grams.
Furthermore, because both grammatical and ungrammatical tunes had
identical contours, contour information could not be used for correct
discrimination.'?

Procedure. This was the same as in Experiment 2

Results

Liking ratings. Preliminary analysis of the liking data revealed
a significant preference for ungrammatical tunes by the control
group. This was attributed predominantly to one ungrammatical
tune (M = 3.6, SD = 2.01). This tune was removed along with its
counterpart tune, which was required to keep the material in
balance (one ungrammatical and two grammatical).'®> Because
there were no significant effects of order on liking ratings, the data
were collapsed over this variable. Table 6 shows mean liking
ratings given by the experimental and the control groups for
grammatical and ungrammatical tunes. A two-way mixed-model
ANOVA, with group (experimental vs. control) as its between-
subjects variable and grammaticality (grammatical vs. ungrammat-
ical) as the within-subjects variable on liking ratings, found no
significant effect of grammaticality, F(1, 94) = 0.015 MSE =
0.0018, p = .90, and no significant effect of group, F(1, 94) =
0.068, MSE = 0.064, p = .80. However, the was a significant
Group X Grammaticality interaction, F(1, 94) = 4.96 MSE =
0.60, p = .028. Participants in the experimental group rated the
grammatical tunes more highly than the ungrammatical tunes,

147) = 1.72, p = .04, one-tailed. However, there was no such
difference for the control group, #47) = —1.47, p = .15.

Classification performance. Because there were no significant
effects of order on the classification performance, the data were
collapsed over this variable. Table 6 shows participants’ rule
judgment performance. From the confidence intervals, it can be
seen that neither group performed significantly better than chance.
Furthermore, the experimental group did not perform significantly
better than the control group, #94) < 1.

Several studies have shown that participants are sensitive to-
ward patterns of repeating elements, known as repetition structure
(Brooks & Vokey, 1991; Gomez, Gerken, & Schvaneveldt, 2000;
Mathews & Roussel, 1997). The effect of repetition structure on
participants’ liking ratings was investigated using a regression
analysis. For each test tune the number of times its repetition
structure occurred in the training set was calculated.'* This statistic
was calculated for each of the three tune features (diatonic inter-
vals, pitch, and chromatic intervals). For each individual, regres-
sion slopes using either one of these three repetition structure
statistics as the only predictor were calculated. Table 7 shows the
mean standardized beta values for the experimental and the control
groups. From the 95% confidence intervals, it can be seen that
none of these coefficients were significantly different from zero.
Participants’ liking responses were, therefore, not influenced by
repetition structure.

Discussion

The aim of Experiment 3 was to test whether participants could
learn an inversion rule that was determined solely by interval
magnitude, rather than contour, because this would rule out any
possible discrimination strategies based on learning local depen-
dencies of contour patterns. The results once again showed that,

' There was no difference in musical experience between participants in
the control group and the experimental group, x> = 1.06, p = .21.

12 A full list of the material can be found on http://www lifesci.sussex.ac.uk/
home/Gustav_Kuhn/Kuhn_DienesJEP_LMC2006/index.htm

'3 The removal of the four tunes led to a slight imbalance in the test
material.

4 A full list of the repetition structures can be found on http:/www.
lifesci.sussex.ac.uk/home/Gustav_Kuhn/Kuhn_DienesJEP_LMC2006/
index.htm
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Mean Standardized Beta Coefficients for the Regression Analysis Using Repetition Structure
Chromatic Intervals, Repetition Structure Diatonic Intervals, and Repetition Structure Pitches as

Independent Predictor Variables

Group Variable M SD LCI ucCl
Experimental Rep. structure diatonic intervals 0.003 0.151 —0.040 0.047
Experimental Rep. structure pitches 0.024 0.133 —0.015 0.062
Experimental Rep. structure chromatic intervals —0.045 0.166 —0.093 0.003
Control Rep. structure diatonic intervals 0.003 0.153 —0.041 0.048
Control Rep. structure pitches —0.036 0.146 —0.078 0.006
Control Rep. structure chromatic intervals —0.002 0.140 —0.043 0.038
Note. Regression analysis was carried out for each participant individually, and the coefficients were averaged

across participants. LCI = lower 95% confidence interval; UCI = 95% confidence interval; Rep. = repetition.

using the liking ratings, participants in the experimental group had
learned to discriminate between grammatical and ungrammatical
tunes. However, when the same participants were unable to make
this discrimination, they were asked to give rule judgments. These
results suggest that the acquired knowledge may have been below
an objective threshold of awareness.

Although great care was taken to balance the test tunes in terms
of sequential dependencies in the presented experiments, no spe-
cial attention was paid to repetition structures. Subsequent analysis
of the material revealed that for most of the test sets the repetition
structures of the grammatical tunes, compared with ungrammatical
tunes, were more similar to the training tunes. The grammatical
tunes tended to have less repeating intervals than the ungrammat-
ical tunes. This meant that if participants were sensitive toward the
repetition structures, the sequential representations of this structure
could be used to successfully discriminate between grammatical
and ungrammatical items. Several studies have shown that partic-
ipants in transfer studies are sensitive toward patterns of repeating
elements (Brooks & Vokey, 1991; Gomez et al., 2000; Mathews &
Roussel, 1997; Tunney & Altmann, 2001). Gomez et al. trained
participants on a set of letter strings that contained no repetitions.
This means that all items had the same repetition structure. Al-
though participants acquired considerable knowledge about the
sequential dependencies, they failed to transfer this knowledge to
a novel vocabulary. These results were used to demonstrate that
participants’ knowledge used for transfer predominantly took the
form of repetition structures. The influence of repetition structure
in Experiment 3 was investigated using a regression analysis. The
results from this analysis showed that participants’ liking ratings
were unaffected by the repetition structure, thus allowing us to
exclude this explanation.

Objective threshold. In all of the test sets and experiments in
which grammaticality was independent of chunks, participants in
the experimental group successfully discriminated between gram-
matical and ungrammatical items using liking ratings, while their
classification performance was at chance and no better than the
control group. The knowledge demonstrated in these conditions
may, therefore, have been below an objective threshold of aware-
ness. However, strictly speaking, knowledge is only below an
objective threshold if the indirect test is more sensitive than the
direct test (Reingold & Merikle, 1988). To make a direct compar-
ison between the indirect and the direct tests, classification and
liking ratings were converted into z scores. For the classification

data, z scores were calculated by subtracting the mean number of
“yes” responses given for ungrammatical tunes from that given for
grammatical tunes and dividing this difference by the mean stan-
dard deviation for that individual. A positive z score, therefore,
represents above-chance discrimination performance. The same
method was used to calculate z scores for the liking responses by
using mean liking ratings rather than “yes” responses.

Table 8 shows the z scores for liking and discrimination re-
sponses. An ANOVA with group (experimental vs. control)'® and
experiment (abstract set vs. Experiment 2 vs. Experiment 3) as
between-subjects variables and task (liking vs. classification) as
within-subjects variable on z scores found no significant Group X
Test X Experiment interaction, F(2, 155) = 0.842 .MSE = 0.077,
p = .43, and no significant effects of experiment, F(2, 218) =
1.50, MSE = 0.105, p = .27, or test F(1, 218) = 0.269, MSE =
0.0247, p = .61. However, there was a significant effect of group,
F(1, 218) = 8.21, MSE = 0.576, p = .005, implying that the
experimental group performed significantly better than the control
group. There was no significant Group X Experiment, F(2, 218) =
0.47, MSE = 0.038, p = .63, or Experiment X Test, F(2, 218) =
0.542, MSE = 0.380, p = .58, interaction. However, there was a
significant Group X Test interaction, F(1, 218) = 8.12, MSE =
0.745, p = .005. Furthermore, the breakdown of this interaction
showed that the experimental group had significantly higher z
scores on the liking task than on the classification task, #(111) =
1.81, p = .033, one-tailed, implying that these individuals had a
significantly better discrimination performance on the liking task
than on the classification task, thus fulfilling the objective thresh-
old criteria. For participants in the control group, this difference
was also significant, #(111) = —2.00, p = .047, but in the opposite
direction. These results, therefore, show that the indirect test was
more sensitive than the direct test, thus fulfilling the objective
threshold criterion.

Participants’ liking ratings were measured using a 9-point liking
scale, and their grammaticality judgments were measured on a
dichotomous yes—no scale. To increase the sensitivity of the gram-
maticality judgments, the yes—no responses were converted to a

'3 Participants in Experiments 1A and 1B were matched in terms of
running order to allow a repeated measures analysis of task on all the data.
Conversely, treating task as between subjects on all the data also gives p <
.05, one-tailed.
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Table 8
Mean z Scores Measuring Discrimination Abilities Between Grammatical and Ungrammatical
Items
Classification Classification
Liking binary 10-point scale
Experiment/group M SD M SD M SD
la, 1b
Experimental 0.144 0.361 0.045 0.445 0.010 0.486
Control —0.128 0.396 0.071 0.396 0.044 0.431
2
Experimental 0.104 0.262 0.027 0.298 0.069 0.359
Control —0.031 0.288 0.071 0.244 0.075 0.260
3
Experimental 0.061 0.255 0.009 0.243 0.017 0.274
Control —0.055 0.253 —0.027 0.240 —0.012 0.226
Pooled
Experimental 0.092 0.274 0.022 0.299 0.038 0.345
Control —0.055 0.291 0.029 0.271 0.033 0.278

Note. The z scores were calculated for the liking and the classification (binary responses) and classification
(10-point scale) responses. Table includes z scores for Experiments la, 1b, 2, and 3.

10-point scale using the five bins of the confidence ratings (50—
60%, 61-70%, 71-80%, 81-90%, 91-100%). The “yes” responses
were coded as positive (+1 to + 5) and “no” responses as negative
(—1 to —5). The new values were calculated by multiplying =
1/-1 (for yes—no) with the bin order. For example, a “yes” re-
sponse with a 50-59% confidence rating was coded as 1, whereby
a no response with a 81-90% confidence rating was coded as —4.
Using these new ratings, z scores for the grammaticality judgments
were calculated using the same method used previously for the
liking ratings.

An ANOVA with group (experimental vs. control) and experi-
ment (abstract set vs. Experiment 2 vs. Experiment 3) as between-
subjects variables and task (liking vs. classification 10 point scale)
as within-subjects variable on z scores found no significant
Group X Test X Experiment interaction, F(2, 218) = 0.072
.MSE = 0.701, p = .50, no significant effects of experiment, F(2,
218) = 1.73, MSE = 0.132, p = .18, or test, F(1, 218) = 0.272,
MSE = 0.028, p = .60. However, there was a significant effect of
group, F(1, 218) = 8.24, MSE = 0.630, p = .004, implying that
the experimental group performed significantly better than the
control group. There was no significant Group X Experiment, F(2,
218) = 0.239, MSE = 0.076, p = .79, or Experiment X Test, F(2,
218) = 0.016, MSE = 0.016, p = .86, interaction. However, most
importantly, there was a significant Group X Test interaction, F(1,
218) = 6.69, MSE = 0.686, p = .01. These results, therefore,
demonstrate that the liking ratings were more sensitive regardless
of the scales used.

General Discussion

The aim of the experiments presented here was to investigate
whether implicit learning of musical rules could go beyond the
learning of chunks of adjacent elements. Participants’ awareness
was evaluated both with regard to subjective and objective thresh-
olds. The criteria of the objective threshold were based on Rein-
gold and Merikle (1988), whereby knowledge is implicit if it
influences participants’ behavior on an indirect test while being

inaccessible on a direct test. The indirect test was, therefore, used
to assess the presence of knowledge, and the direct test was used
to measure participants’ awareness of this knowledge. The direct
test allows for an asymmetric inference in this respect; performing
above chance is not necessarily conscious knowledge, but chance
performance is good evidence of a lack of conscious knowledge.
However, knowledge was only claimed to be below an objective
threshold of awareness if the indirect test was more sensitive than
the direct test. If participants performed above chance on the direct
test, confidence ratings were used to assess their metaknowledge
and evaluate their awareness in respect of their subjective level of
awareness. This subjective threshold of awareness was based on
the theoretical framework put forward by Dienes and Perner
(1999) and made use of the zero-correlation and guessing criteria.

In Experiments 1A and 1B, it was shown that participants
acquired knowledge about the fragment structures in terms of
either pitch or interval chunks, which was elicited using both direct
and indirect tests. Because participants performed above chance on
the classification task, their knowledge did not satisfy the objective
threshold criterion of unconscious knowledge. Participants’ level
of awareness was, therefore, further analyzed with subjective mea-
sures of conscious knowledge. Although participants were asked to
give verbal descriptions of the strategies used to discriminate the
test tunes, these reports provided no valuable insight into their
declarative knowledge. However, by using the zero-correlation
criterion, it was shown that, for participants in the experimental
group, there was a positive correlation between their confidence
ratings and their classification performance, thus suggesting the
use of conscious knowledge. These results coincide with those of
Kuhn and Dienes (in press) demonstrating that learning about
interval and pitch chunks led to conscious knowledge in this
context. The positive zero-correlation criterion does not rule out
the fact that some knowledge could be implicit. However, partic-
ipants did not perform significantly different from chance when
they were guessing, thus providing no evidence to suggest that
they had acquired any implicit knowledge of the chunks.
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The main aim of the experiments presented here was to inves-
tigate whether implicit learning could go beyond the learning of
chunks of adjacent elements. Chunking models such as the com-
petitive chunker (Boucher & Dienes, 2003; Servan-Schreiber &
Anderson, 1990) or the parser (Perruchet & Vinter, 1998) become
sensitive toward local dependencies and would, therefore, perform
well on the material used in the exemplar and the fragment set,
because grammaticality was associated with differences in chunk
regularities. In the abstract set (Experiment 1A and 1B) and, in
contrast, in Experiments 2 and 3, all test items were created from
a set of bigrams that never occurred in the training phase. Because
these bigrams have never been encountered before, chunking mod-
els prima facie would have no knowledge about these bigrams and,
therefore, would be unable to apply any knowledge gained from
the training items to this set of tunes. The fact that participants
were able to discriminate between grammatical and ungrammatical
items on these test sets implies that participants learned more than
merely bigrams. One possible counterargument is that people will
not perfectly perceive the different pitch or interval n-grams, and
some new n-grams may be systematically confused with some old
n-grams. Alternatively, some new n-grams might simply be seen
as similar to some old n-grams. Such confusions or similarities
may allow a chunking mechanism to get a handle on the material
in the abstract set. The similarity of a test bigram with a training
bigram could be represented by a parameter s, 0 = s = 1, where
s = 1 for the similarity of a bigram with itself. Performance of a
chunker would deteriorate as s went to zero. Thus, a chunker
would do better on a chunk set than an abstract set, other things
being equal. This was not the pattern observed in Experiment 1. In
sum, the results are not plausibly explained by chunking models of
implicit learning.

Several studies have shown that people can incidentally learn
nonlocal dependencies (Creel et al., 2004; Gomez, 2002; Newport
& Aslin, 2004), the results of which would be rather challenging
for chunking mechanisms. However, in these studies, the role of
awareness was never directly addressed, thus making it difficult to
interpret them in terms of implicit learning. In the current exper-
iments, the fact that participants failed to distinguish between
grammatical and ungrammatical items when grammaticality was
not associated with differences in chunk strength indicated that the
knowledge used for this discrimination may have been below an
objective threshold of awareness. A direct comparison between
participants’ liking and their classification responses showed that
the indirect test was more sensitive than the direct test. These
results show that the knowledge used to distinguish between
grammatical and ungrammatical items was below an objective
threshold of awareness.

The results demonstrate the presence of unconscious knowledge
only to the extent that the direct and indirect tests tested for the
same knowledge contents (Dulany, 1962; Shanks & St. John,
1994). To illustrate the problem, consider Whittlesea and Price’s
(2001) argument that tests of affective judgment bias people to
look at global properties of stimuli, whereas difficult tests of
recognition bias people to adopt analytical strategies. The problem
would arise for the existing stimuli if people were willing to base
their liking on conscious knowledge of the presence of inversion
but, when asked to search for rules, were biased to consider other
properties of the strings. This argument can, in principle, never be
ruled out, but its plausibility in this case rests on the plausibility of
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the claim that participants who were asked to search for musical
rules and who are consciously aware of the inversion structure (or
a correlated structure) in the stimuli nonetheless regard the inver-
sion rule (or its correlate) as irrelevant to the task of searching for
musical rules. The task of the critic is to make this claim plausible.

The idea that knowledge about chunks can be elicited using both
direct and indirect tests, while knowledge about rules that are
independent of chunks can only be elicited using affective ratings,
is somewhat supported by previous studies looking at implicit
learning of musical rules. In the study by Kuhn and Dienes (in
press), participants’ knowledge about the training items was mea-
sured using classification responses, similar to the those used in the
current study. Their results showed that participants’ classification
responses were influenced solely by chunks rather than the inver-
sion rule. Furthermore, Dienes and Longuet-Higgins (2004)
showed that participants with a special interest in serialist music
could learn musical transformations that were independent of
chunks. In their discrimination task, participants were told that the
melodies were genuine compositions from music students consist-
ing of a theme-reply pairs and that for half the pairs the themes
and replies had been swapped, and the other half were genuine
compositions from the students, and they had to classify which was
which. The task demands for this study are more similar to the task
demands in the affective ratings rather than the classification task,
further supporting the view that knowledge about rules that are
independent of chunks can only be elicited using indirect tests with
musical stimuli.

Transfer effects in which the terminal elements of the grammar
are changed between the training and the test phase have been used
to argue that participants acquire knowledge about the abstract
structure of the grammar that is independent of the bigram struc-
ture. This interpretation would be a serious challenge to chunking
models of implicit learning. However, the idea that these studies
truly demonstrate implicit learning of an abstract rule has been
criticized on the grounds that the abstraction of the rule may take
place during the test rather than the training phase (Brooks &
Vokey, 1991; Redington & Chater, 1996; Vokey & Brooks, 1992).
One line of evidence supporting this view comes from studies
using indirect measures. If the abstraction of the rule occurs
automatically during the training phase, participants should be able
to automatically apply this knowledge to the transfer set (Whit-
tlesea & Dorken, 1997) regardless of whether knowledge is mea-
sured using an indirect or direct test. Although several studies have
shown that the mere exposure effect could be generalized to a new
set of grammatical letter strings (Gordon & Holyoak, 1983; Newell
& Bright, 2001, 2003; Whittlesea & Dorken, 1997), this effect
disappeared when the vocabulary of terminal elements was
changed (Newell & Bright, 2001; Whittlesea & Dorken, 1997).
The fact that in the current experiment the mere exposure effect
was generalized to the test sets implies that the rules were learned
automatically and during the training phase rather than the test
phase.

The results from this study have shown that implicit learning
could go beyond the learning of chunks of adjacent elements. If
implicit learning does not merely take to form of learning about
chunks, what did people learn? Several studies have shown that
people in artificial grammar-learning tasks become sensitive to-
ward the repetition structure of letter strings (Brooks & Vokey,
1991; Gomez et al., 2000; Mathews & Roussel, 1997). This type of
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knowledge is particularly important in transfer tasks (Brooks &
Vokey, 1991; Gomez, 1997). Although no special attention was
paid to the repetition structure when designing the material, sub-
sequent regression analysis showed that participants’ liking ratings
were independent of the repetition structures, thus excluding this
possibility. Our results suggest that participants learned some form
of nonlocal dependencies. This nonlocal dependency could take
two rather different forms. It is possible that individuals learned a
nonlocal value—value mapping between pitches or diatonic inter-
vals. For example, if the first note is a D, the fifth note must be a
B. This mapping is similar to the rules used in the biconditional
grammar-learning tasks (Johnstone & Shanks, 2001; Mathews et
al., 1989; Shanks et al., 1997). However, it is also feasible that
individuals learned a variable —variable mapping (i.e., in the form
of operations over variables; Marcus, 2001). That is, participants
learned that the inversion is formed by multiplying the diatonic
intervals by —1 or subtracting each pitch number from a particular
constant. However, the results presented here do not allow us to
distinguish between the two possibilities. Whether people have
learned a variable—variable mapping or a value—value mapping,
future work could investigate whether the knowledge generalizes
to different lengths of tunes; if it does, that would be evidence that
people have learned not just more than chunks but more than a
finite-state grammar, in fact more than just a context-free grammar
(Dienes & Longuet-Higgins, 2004).

We went to great lengths here to show that implicit learning can
go beyond the learning of chunks, and we illustrated how these
results challenge current models of implicit learning that assume
that implicit learning merely takes the form of chunks. This, of
course, poses the question as to what alternative computational
model can account for results presented here. One alternative
model would be the two-layer feed-forward autoassociators pro-
posed by Dienes (1992). In this model, the input of the entire
sequence is represented across a set of input nodes, and the error
in predicting the same activation in the output units is used as a
measure of grammaticality. The same interval occurring in differ-
ent positions is coded as different entities, which means that these
autoassociators are insensitive to the difference between local and
nonlocal dependencies. This type of autoassociator should, there-
fore, have no problems in learning the type of material used in
these experiments. However, these models are too insensitive to
the difference between local and nonlocal dependencies; people
are, in fact, sensitive to the distinction (e.g., Kinder, 2000). The
simple recurrent network (SRN) has become one of the most
influential models of implicit learning. SRNs learn to predict the
next element in a sequence. Although SRNs are particularly sen-
sitive to transient probabilities between successive elements, one
of the features that makes them particularly interesting is their
ability to store information about longer dependencies (Cleer-
emans & McClelland, 1991; Rodriguez, 2001, 2003; Servan-
Schreiber, Cleeremans, & McClelland, 1991). However, these
nonlocal dependencies are learned much more slowly, and it is not
clear whether the material used in current experiments could be
learned. Timmermann and Cleeremans (2000) investigated
whether the SRN could learn the biconditional rule used by Shanks
et al. (1997). After very extensive training (3,000 epochs), the
SRN was capable of distinguishing between grammatical and
ungrammatical items. However, from their results, it is not clear
whether the network learned the nonlocal mapping or whether the
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correct discrimination was based on irregularities in the test ma-
terial. It, therefore, remains to be seen whether the SRN could
learn the inversion rule used in the current experiments.
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