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The cochlea uses active amplification to capture faint sounds. It has
been proposed that the amplifier comprises a set of self-tuned
critical oscillators: each hair cell contains a force-generating dy-
namical system that is maintained at the threshold of an oscillatory
instability, or Hopf bifurcation. While the active response to a pure
tone provides frequency selectivity, exquisite sensitivity, and wide
dynamic range, its intrinsic nonlinearity causes tones of different
frequency to interfere with one another in the cochlea. Here we
determine the response to two tones, which provides a framework
for understanding how the ear processes the more complex sounds
of speech and music. Our calculations of two-tone suppression and
the spectrum of distortion products generated by a critical oscil-
lator accord with experimental observations of basilar membrane
motion and the nervous response. We discuss how the response of
a set of self-tuned oscillators, covering a range of characteristic
frequencies, represents the structure of a complex sound. The
frequency components of the stimulus can be inferred from the
timing of neural spikes elicited by the vibrating hair cells. Passive
prefiltering by the basilar membrane improves pitch discrimination
by reducing interference between tones. Our analysis provides a
general framework for examining the relation between the phys-
ical nature of the peripheral detection apparatus and psychophys-
ical phenomena such as the sensation of dissonance and auditory
illusions.

The nonlinear nature of sound detection has been known for
more than 250 years, ever since Tartini described the per-

ception of combination tones that are not present in a complex
sound stimulus (1). More recently, experimental techniques have
made it possible directly to observe nonlinearities in the basilar
membrane motion (2–8) and in the signals of the auditory nerve
(9) and, in some instances, to trace them to the transduction
process in the hair cells of the inner ear (10, 11). Nonlinearities
imply that the response to two tones is not simply a superposition
of single frequency responses—different frequencies interfere
with and distort one another (10). Manifestations of this inter-
ference, which have been identified experimentally, include
two-tone suppression (7–9) and the generation of distortion
product (DP) frequencies (5, 6). Here we demonstrate that these
physiological observations are a direct consequence of the active
system of signal detection (12), which the ear uses to amplify
weak signals. This insight permits us to draw conclusions about
the way that the auditory system infers information about pitch
and to shed light on a variety of psychophysical observations.

Active Amplification
That an active mechanism operates in hearing was predicted as
long ago as 1948 by Gold (13), who argued that the cochlea might
work analogously to a regenerative radio receiver and use a
source of energy to counteract the limiting effects of friction and
actively amplify the stimulus. General acceptance of this view-
point has been hampered by the lack of a quantitative theory to
confront with experimental data and also by doubts about how
the hypothesized amplificatory feedback could be correctly
regulated. The recently introduced notion of self-tuned critical-
ity (14) addresses these issues. According to this concept, each
hair cell contains a force-generating dynamical system that is
poised on the verge of an oscillatory instability (a Hopf bifur-
cation) and is kept at that critical point by a self-adjustment

mechanism. Such a critical oscillator is especially responsive to
weak sinusoidal stimuli applied at its characteristic frequency,
and calculations have demonstrated that a Hopf resonance
provides frequency selectivity, extreme sensitivity, and a broad
dynamic range as a result of nonlinear amplification (14, 15).

Here, we recall the response of a mechanical amplifier, which
is self-tuned to a Hopf bifurcation, to a pure tone of frequency
f, characterized by the amplitude Ff of a periodic stimulus force.
The system responds with a deflection X, which is dominated by
the Fourier amplitude Xf at the same frequency. Stimulus and
response are related by an expansion of the form (14)

Ff 5 AXf 1 BuXfu2Xf, [1]

where the principal nonlinearity is cubic. The complex coeffi-
cients A(f) and B(f) are frequency-dependent. The Hopf bifur-
cation is characterized by the fact that A vanishes for a charac-
teristic frequency fc:

A~f! . a~f 2 fc!, [2]

with a complex coefficient a. If the stimulus frequency is close
to the characteristic frequency, the linear term in Eq. 1 is
insignificant and the system displays a nonlinear amplified
response, Xf ; Ff

1/3. This occurs when uf 2 fcu , Dfa, where Dfa [
u7B1/3Ff

2/3y(4a)u denotes the bandwidth of active amplification,
which depends on the stimulus amplitude. For frequencies
outside this bandwidth, the response is linear, Xf ; Ffyuf 2 fcu.
Within the sensitive bandwidth Dfa the system amplifies with a
gain uXfuyuFfu ; Ff

22/3, which becomes very high for weak stimuli.
The power-law response of the system allows it to operate over
a wide dynamic range; it compresses the 12 orders of magnitude
in stimulus intensity that the ear can hear into deflections that
vary by only a factor of 100.

Two-Tone Interference
Two-tone suppression and the generation of DPs can be ex-
plained by the two-tone interferences generated at a Hopf
bifurcation. Because the response of a Hopf oscillator is generic
near its critical point, we can describe the main features of these
effects without detailed knowledge of the underlying molecular
mechanisms.

We are interested in the response to two tones (frequencies f1
and f2, frequency difference Df 5 uf2 2 f1u) with amplitudes Ff1

and Ff2
acting on a critical Hopf oscillator with fc 5 f1. The

spectrum of the response contains the corresponding amplitudes
Xf1

and Xf2
. Both amplitudes, however, are systematically smaller

than each of them would be separately in the absence of the
second tone, as is observed experimentally (7). This two-tone
suppression is illustrated in Fig. 1, which displays the numerical
solutions of a simple model for a Hopf bifurcation (see Appendix
A). The diagram shows that the nonlinear amplification of a tone
at the oscillator’s characteristic frequency can be extinguished by

Abbreviation: DP, distortion product.
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the presence of the second tone, especially when Ff2
. Ff1

and
Df , Dfa. Two-tone suppression near a Hopf bifurcation is
generic and follows from nonlinearities in the expansion of the
Fourier modes (see Appendix B). Analysis reveals that the
presence of Xf2

in the response spectrum generates an effective
linear term in the equation for Xf1

. This mode thus behaves as
if the oscillator were not tuned precisely to the bifurcation point.
The corresponding loss of amplification would lead to an in-
creased detection threshold when a second tone (or noise) is
introduced. This phenomenon is referred to as masking (16).

The nonlinearities of a Hopf bifurcation also generate new
frequencies. The amplitudes Xf1

and Xf2
couple to the amplitudes

with frequencies 2f1 2 f2 and 2f2 2 f1, which are therefore also
present in the response (see Appendix B). They subsequently
excite further DPs. This leads to a hierarchy of DPs with
frequencies fk [ f1 1 (k 2 1)Df, where k is a positive or negative
integer. For large uk 2 3y2u . DfayDf the amplitudes decrease
exponentially

uXfk
u , e2 luk 2 3/2u. [3]

This characteristic spectrum of DPs is apparent in Fig. 2, where
the response of a simple model (see Appendix A) is displayed for
three different values of Df, together with the corresponding
waveforms. The coefficient l21, characterizing the number of
strongly excited DPs, decreases as Df increases. These findings
are consistent with experimental data (6). For Df , Dfa, a large
number of modes is excited and deviations from the exponential
law appear. In the limit of vanishing Df, a singular limit is
attained for which the DP amplitudes decay as a power law uXfk

u
; uk 2 3y2u2v, with v 5 4y3 (see Appendix B). This is confirmed
by numerical solutions of the simple model described in Appendix
A, for which we find v . 1.31 6 0.05.

It has previously been suggested that two-tone suppression
might be explained by a passive nonlinearity sandwiched be-
tween two linear bandpass filters (17). Such a system also could
produce a prominent DP at frequency 2f1 2 f2 on the assumption
that the nonlinearity is cubic (17). This picture has no physical
foundation, however, and also fails to account for the observed
amplitude dependence of the DP spectrum. By contrast, a
self-tuned Hopf bifurcation simultaneously describes two-tone
suppression and DP generation, as well as explaining why the
nonlinear response to a single tone at the characteristic fre-
quency is cubic (14). Moreover, the model has a sound physical
basis, because the presence of an active system of amplification
is well-established (12).

Passive Prefilter
Although a Hopf bifurcation provides excellent amplification,
especially for weak signals, its ability to filter frequencies is less
impressive. An oscillator with fc 5 f1 can have a significant
contribution Xf2

in its response spectrum, even when Df . Dfa.
This interference, which would pose problems for the detection
of complex sounds, can be reduced by prefiltering the stimulus.
It is well-established that the mechanical properties of the basilar
membrane provide such a filter (19), which, owing to the
tonotopic organization of hair cells (20), is centered on the
characteristic frequency of each oscillator. The bandwidth Dfp of
this passive prefilter sets a frequency interval above which
two-tone interference is suppressed, whatever the level of the
stimulus. This bandwidth is therefore roughly equal to the critical
bandwidth DfCB (16) measured at moderate to high intensities,
for which the active system does not significantly sharpen the
tuning. At low intensities, Dfa ,, Dfp and the active amplifier is
itself very effective at suppressing interference; in this case we
expect the critical bandwidth to diminish, as is indeed observed
experimentally (18).

Pitch Extraction
Our analysis contributes to the longstanding debate about
whether frequency is encoded by place or by timing. An example
of the response of a full set of hair cells, from which frequency
information must be derived, is shown in Fig. 3. Could frequency
be represented by the spatial distribution of the neural response,
which is maximal where the disturbance is greatest? This notion
(which was originally promoted by Békésy’s experiments on
cochlear mechanics) suffers a drawback. The passive filter is too
broad to account for the observed pitch discrimination (19) and,
although the active amplifier certainly sharpens the tuning for
weak stimuli, it has little effect at high intensities. Many have

Fig. 1. Two-tone suppression at a Hopf bifurcation. A Hopf oscillator of
characteristic frequency fc is stimulated by an oscillating force that contains
two frequency components: a fixed frequency f1 5 fc and a variable frequency
f2. The amplitudes of the stimulus force at frequencies f1 and f2 are denoted
Ff1 and Ff2, respectively. (a) Response of the system for the case of equal
stimulus amplitudes Ff1 5 Ff2 as a function of the frequency difference
Df 5 f1 2 f2. The bandwidth of nonlinear amplification of the Hopf oscillator
is denoted Dfa. Displayed are the Fourier amplitudes of the displacement at
the two stimulus frequencies, Xf1 and Xf2. As f2 approaches f1, the response Xf1

is suppressed. Similarly, the response Xf2 is suppressed as compared to the
response of the system to a single tone at frequency f2, shown as a faint line
for comparison. For Df 5 0 (i.e. f1 5 f2), only a single frequency is present; the
Fourier amplitude of the response at this frequency is shown as an individual
point at the top in the center. (b) Displacement amplitudes Xf1 and Xf2 of the
response to a two-frequency stimulus with a small relative frequency differ-
ence (DfyDfa 5 0.05) as a function of the stimulus magnitude Ff1, for fixed Ff2.
The response Xf2 is increasingly suppressed as Ff1 is raised. The response Xf1 is
also diminished in comparison to the single-tone response (i.e. Ff2 5 0), which
is displayed as a faint red line for comparison. The suppression of Xf1 is
negligible when Ff1 .. Ff2; similarly, the suppression of Xf2 is negligible when
Ff1 .. Ff2.
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argued that the majority of information about frequency is
derived from the detailed time course of the response of the hair
cells, via the timing of neural spikes (21, 22). When stimulated
by two tones, each excited oscillator vibrates in a pattern that
contains components at f1 and f2 and also at the DP frequencies.
Both the absolute and the relative sizes of each component vary
along the cochlea, as the characteristic frequency of the hair cells
changes (Fig. 3). The nervous system is provided with only
partial information about each of these complex waveforms, in
the form of a time series of nervous spikes. We argue below that
clear identification of a frequency component is possible only if
it is dominant in the motion. This suggests a role for basilar
membrane resonance in contraposition to place coding. By
prefiltering the stimulus and limiting interference, it permits
accurate inference of frequency from nervous timing.

We base our model of pitch discrimination on the generic
nervous response of hair cells: (i) spikes are elicited whenever
the hair bundle deflection traverses a threshold (for frequencies
below 5 kHz, at least); and (ii) hair cells with a range of different
thresholds are present at each characteristic frequency (23). How
might the nervous system extract information about frequency
and intensity from the resulting spike trains? A simple, but
effective, algorithm is to compute a histogram of inter-spike
intervals T, summing over all the hair cells in the cochlea (and
integrating over a fraction of a second). Perceived tones corre-
spond to peaks in the histogram and are assigned pitch 1yT,

while the perceived loudness of a tone is related to the height of
the peak. Examples of this procedure are shown in Fig. 4a. Three
regimes are apparent, depending on the ratio of the stimulus
frequencies. (i) When the two frequencies are very close, Df ,,
Dfp, a single tone is perceived with pitch (f1 1 f2)y2. In addition,
there are strong loudness fluctuations at the beat frequency f2 2
f1. The quality of the beats depends on Df; the ratio of silence
to loudness diminishes as the frequencies approach one another
(reflecting the waveform in Fig. 2b). (ii) When the two frequen-
cies differ by a few percent, Df , Dfp, the perceived pitch is more
ambiguous. The histogram becomes much broader, making pitch
assignment less accurate. Furthermore, in the case where two
pitches can be discriminated, both undergo rapid fluctuations in
loudness with different phases. The resulting variability of the
perceived pitch would account for the roughness of sensation
that is experienced in this situation (24). (iii) At larger frequency
differences, Df . Dfp, the two pitches f1 and f2 are accurately and
clearly distinguished. Although we do not rule out the possibility
that the nervous system uses a more sophisticated algorithm to
infer pitch, the results summarized in Fig. 4b concur with a wide
variety of psychophysical observations (16).

They also add to our understanding of the enigmatic relation
between harmony and the ratio of small integers, on which
musical scales are based. Helmholtz (1) overturned the
Pythagorean doctrine by arguing that consonant intervals are not
perfect harmonies, but simply less jarring dissonances. He

Fig. 2. Two-tone distortion products at a Hopf bifurcation. A Hopf oscillator of characteristic frequency fc is stimulated by an oscillating force that contains two
frequency components, f1 5 fc and f2, of equal magnitude. (a) Spectral representation of the amplitude Xf of the response as a function of frequency f for several
values of the frequency difference Df 5 f1 2 f2 (Dfyfc 5 0.2, 0.05 and 0.01). The response exhibits distinct spikes corresponding to distortion products of
frequencies fk 5 f1 1 (k 2 1)Df, where k is an integer. The examples shown correspond to a high-level stimulus (see Appendix A). (b) Complex waveforms of
the response X as a function of time t that correspond to the spectra displayed in a.
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ascribed dissonance to close, but inexact, matches in frequency
between some of the harmonics that are generated when notes
are played on a musical instrument. Subsequent experiments

using pure tones lent weight to his argument (24). No preference
for integer frequency ratios was expressed; rather, the roughness
of two tones was found to be most intrusive when the difference
amounted to a few percent and to diminish smoothly as Df
increased. Helmholtz attributed the roughness to beats, but his
explanation is unsatisfactory because it fails to explain why
dissonance persists above absolute frequencies of 1 kHz, when
the beats are too fast to be distinguished. It is little surprise that
his linear argument proves inadequate for a nonlinear system.
We argue that dissonance arises from the difficulty of inferring
frequency components from partial information about a com-
plex waveform, which results in an indeterminancy of pitch. Both
dissonance and pitch discrimination depend on the degree of
interference between the two tones in the cochlea, so we would
expect the interval of dissonance to have the same dependence
on frequency as the interval of pitch discrimination, as is indeed
observed (24). We also predict that these intervals should
diminish at low intensities, when the active amplifier is most
effective at sharpening the filter.

In addition, our analysis accounts for two different types of
auditory illusion and indicates that they have distinct origins.
Many investigators have confirmed that the DP frequencies can
be heard (25). Although the DPs are generated by the Hopf
resonance, they are not produced as the strongest component.
Thus the active amplifier cannot, by itself, account for their
audibility. Nevertheless, any nonlinearity in the prefilter would
generate small DP components (1), which subsequently would be
magnified by oscillators of the corresponding characteristic
frequency. The Tartini effect, then, can be explained by the
combination of a nonlinear prefilter and active amplifier. The
second type of illusion is the residue pitch (26, 27). When f1 and
f2 are neighboring harmonics, this pitch is identified as the
missing fundamental Df. But when the frequencies are less

Fig. 3. Two-tone response of a set of Hopf oscillators. The oscillators cover a
range of critical frequencies fc. They are forced by an oscillating stimulus that
contains two frequency components f1 and f2 ( f1yf2 5 1.05). Both compo-
nents have an equal amplitude of moderate level (see Appendix A). Shown are
the Fourier amplitudes Xf of the displacement at the two stimulus frequencies
and at the frequencies of the principal distortion products (2f1 2 f2, 2f2 2 f1,
3f1 2 2f2 and 3f2 2 2f1), as a function of the critical frequency fc of the
oscillators. In the cochlea, the critical frequency varies with position. The
diagram can thus be interpreted as the predicted cochlear response along the
basilar membrane. Over a wide range of fc, the excited oscillators respond with
three significant, but unequal, frequency components and therefore display
complex, nonlinear waveforms.

Fig. 4. Pitch determination in the presence of a two-tone stimulus. The response of a Hopf oscillator can be used to generate a model nervous spike train by assuming
that a spike is elicited whenever the displacement amplitude X of the oscillator traverses a threshold value. The time intervals T between consecutive spikes provide
informationabout thefrequencycomponents in thestimulus. (a) Pitchextraction.Histogramofthereciprocal,T 2 1,of the inter-spike intervals for threedifferentvalues
of f2yf1, where f1 and f2 are the frequency components in the stimulus (marked by red arrows). The histogram is summed over a number of oscillators with different
characteristic frequencies and a range of thresholds (see Appendix A). For f1yf2 5 1.3, two pitches corresponding to the stimulus frequencies can be clearly identified.
For f1yf2 5 1.1, two pitches can be distinguished, but the corresponding peaks are broadened and distorted, suggesting greater ambiguity in pitch assignment. For
sufficiently close frequencies f1yf2 5 1.03, only one pitch, corresponding to the mean stimulus frequency, is extracted. (Inset) The time-dependent height of this
histogram peak, indicating the occurrence of beats in the loudness. (b) Pitch discrimination. The locations of maxima in the histograms of inverse inter-spike intervals
are marked by points (for larger values of f1yf2, when two main peaks are clearly resolved, each peak is split; the subsidiary maximum is marked by a smaller point).
Graybarsprovideanindicationofthewidthofthepeaks: theyextendovertherangeforwhichthehistogramheightexceedsone-tenthofthepeakheight.Thediagram
shows that for f1yf2 . 1.15, the two pitches can be clearly discriminated. For small f1yf2 , 1.05, a single pitch is inferred and beats occur. In the intermediate range,
two pitches are distinguished but they are more ambiguous, suggesting a sensation of roughness.
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simply related, one or more pitches close to, but not equal to, Df
are heard. These pitches are derived from the complex waveform
of hair-bundle motion and appear as peaks in the histogram of
spike intervals (Fig. 5). This adds substance to previous sugges-
tions (26–28) that they are artefacts that arise from the coding
of hair-bundle vibration as a time series of nervous spikes.

Summary
In summary, we have provided a unifying physical description of
two-tone interference effects and shown that many aspects of our
perception of sound may be traced to the physiology of the inner
ear, where they originate in one (or a combination) of the three
stages of sound detection: prefiltering by the basilar membrane,
active amplification by hair cells, and neural coding of hair-
bundle motion.

Appendix A: Numerical Model
Active Amplifier. Numerical results are solutions of the complex
differential equation

t
dZ
dt

5 ~2pitfc 2 «!Z 2 uZu2Z 1 F̃f1
e2pif1t 1 F̃f2

e2pif2t,

where t is a time scale and the Hopf bifurcation occurs for « 5
0. We use frequencies for which f1yDf is integer and define the
response X 5 x0Re(Z). The amplitudes Xf 5 2Df *0

1/Df

dtX(t)e22pift, obtained by a Fourier transform of the limit cycle,
satisfy Eqs. 1, 2, A4, and A5 with a 5 (2pityx0)(FfyF̃f) and B 5
B# y2 5 C 5 ay(2pitx0

2). The active bandwidth Dfa is defined as

the value of uf 2 fcu for which the single-frequency response falls
to half the peak amplitude. It varies with force, Dfa ; Ff

2/3:
comparison with the experimental basilar membrane response
(4) suggests that Dfayfc 5 0.01, 0.1, and 1 correspond, respec-
tively, to sound pressure levels 10, 40, and 70 db. Data in Figs.
1 and 2 were obtained with tfc 5 1, x0 5 1, slightly on the
oscillating side of the bifurcation, « 5 21023. In Fig. 2, F̃f1

5
F̃f2

5 0.5, giving Dfayfc . 1.22 (a high-level stimulus). In Figs.
3 and 4, a moderate stimulus was used, such that Dfayfc . 0.05.
Data in Fig. 5 were obtained by using stimuli of slightly higher
amplitude, corresponding to Dfayfc 5 0.1.

Passive Prefilter. Results in Figs. 3 and 4 were obtained by using
a passive prefilter x(f), which multiplies Ff before excitation of
the Hopf resonance. This is equivalent to the coefficients a and
B in Eqs. 1 and 2 having the functional form x21(f). The form
x(f) 5 [(f 2 fc)2y(Dfp)2 1 1]21 with bandwidth Dfpyfc 5 0.15
is a fair approximation of the postmortem amplitude-response of
the basilar membrane (3). The prefilter suppresses two-tone
interferences for Df . Dfp. It does not affect the relative
amplitudes of DPs.

Neural Response. Data in Figs. 4 and 5 were obtained by using a
set of 100 oscillators with characteristic frequencies in the range
fcyf1 5 0.5 2 1.5. A neural spike was elicited by an oscillator
every time its response X traversed a given threshold. Histo-
grams of inter-spike intervals were constructed, averaging over
all positive thresholds for each oscillator and then summing over
all oscillators.

Appendix B: Generic Two-Tone Distortions Near a Hopf
Bifurcation
In the presence of a stimulus

F~t! 5 Ff1
e2pif1t 1 Ff2

e2pif2t [A1]

containing two different frequencies f1 and f2, the response of a
dynamical system close to a Hopf bifurcation contains all Fourier
amplitudes with frequencies f 5 nf1 1 mf2, where n and m are
positive or negative integers. For simplicity, we choose stimuli
with commensurate frequencies, for which f1yDf is integer and
the response is given by

X~t! 5 O
k

Xfk
e2pifkt [A2]

with fk 5 f1 1 (k 2 1)Df.
Close to the Hopf bifurcation and for small amplitudes Xf, we

can write a general expansion of the form

Ffk
5 !~fk!Xfk

1 O
mn

@~fk, fm, fn!Xfk 2 fm 2 fn
Xfm

Xfn
1 . . . [A3]

Throughout this paper, we ignore quadratic terms that occur if
the symmetry X 3 2X of the active system is broken; they
renormalize the coefficients B and B# of the cubic terms in Eq.
A4 below and are only involved in the generation of higher
harmonics and difference tones. For small stimulus and large Df,
the dominant terms in the expansion (A3) for the response at
frequencies f1 and f2 is given by

Ff1
5 A~f1!Xf1

1 B~f1!uXf1
u2Xf1

1 B# ~f1, f2!uXf2
u2Xf1

Ff2
5 A~f2!Xf2

1 B~f2!uXf2
u2Xf2

1 B# ~f2, f1!uXf1
u2Xf2

, [A4]

where A(f) 5 !(f), B(f) 5 @(f, f, f) and B# (f1, f2) 5 2@(f1, f1,
f2). We choose one of the stimuli to be at the characteristic
frequency, f1 5 fc, therefore A(f1) 5 0. For Ff1

5 F and Ff2
5

Fig. 5. Residue pitch. In the presence of two stimulus frequencies f1 and f2 5

f1 1 Df, one or more pitches in the vicinity of the frequency Df can be
extracted. (a) Displayed are subsidiary peaks in the histogram of the recipro-
cal, T 2 1, of the inter-spike intervals, in the vicinity of the pitch that corre-
sponds to Df. The responses to three different combinations of stimuli fre-
quency are shown ( f2:f1 5 120:100, 130:110 and 135:115), indicating that the
inferred residue pitch varies as a function of f1yDf. (b) Comparison between
the location of histogram peaks (red bars) and the experimentally determined
perceived pitch of residues (black and gray circles; data of ref. 27 for two
different subjects).
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0, it follows that Xf2
5 0 and the nonlinear single-tone response

uXf1
u . uF1/3B21/3u is recovered. The stimulus Ff2

generates Xf2
,

which in the linear regime obeys Xf2
. Ff2

yaDf. The mode Xf2

creates an effective linear term for Xf1
with Aeff . B# uXf2

u2. The
mode Xf1

therefore behaves as if the system were mistuned and
displays a suppressed response that is linear for small Ff1

.
Similarly, Xf1

creates an effective linear term that renormalizes
A(f2) and suppresses the response Xf2

.
Distortion products result from nonlinear terms Xf1

2 X*f2
and

Xf2

2 X*f1
, which couple to the Fourier modes with frequencies 2f1 2

f2 and 2f2 2 f1. For example, in the absence of a stimulus of
frequency 2f1 2 f2, i.e. F2f12f2

5 0, the corresponding amplitude
obeys

0 5 A X2f1 2 f2
1 BuX2f1 2 f2

u2X2f1 2 f2
1 C Xf1

2 Xf2

p , [A5]

where C 5 @(2f1 2 f2, f1, 2 f2). This leads to a DP amplitude
uX2f12f2

u . uCyaDf iXf1

2Xf2
u. This mode together with Xf1

generates, via
the same coupling, the DP at 3f1 2 2f2. Recursively, we therefore
obtain a hierarchy of DPs with frequencies fk 5 f1 1 (k 2 1)Df,
whose amplitudes decay exponentially according to Eq. 3 with
l . ln(7Dfy12Dfa) for Df .. Dfa.

For smaller Df, the response involves a large number of terms
of the expansion (A3) and deviations from a pure exponential
appear. An interesting limit occurs for Df 3 0 where the linear

coefficients A(fk) . aDf(k 2 1) and the frequency dependence
of @(f, f9, f 0) can be neglected for a large number of modes
around f1. With this approximation Eq. A3 becomes

Ffk
. B~f1!O

mn

Xfk 2 fm 2 fn
Xfm

Xfn
, [A6]

which corresponds to X(t) . B21/3F1/3(t). The spectrum of
X(t) exhibits, for large uku, a power law decay of DPs, Xfk

;
uk 2 3y2u2v, centered around the critical frequency. This can
be demonstrated explicitly in the case Ff1

5 Ff2
5 F, for which

the response to a two-tone stimulus for small Df is X(t) .
(2FyB)1/3cos1/3(2p(f1 1 Dfy2)t)cos1/3(pDft). The spectrum Xfk

in this limit is therefore simply given by the convolution of the
spectrum Cn with itself, where Cn are the Fourier components
of C(t) [ cos1/3(2pft) 5 (nCne2pinft. These Fourier components
decay for large n as Cn ; n2v with v 5 4y3. This power law
ref lects singularities of dCydt. Indeed, at the zeros t0 for which
C(t0) 5 0, dCydt ; (t 2 t0)23/2 diverges with a power law that
determines the exponent v.
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