[ THE ROYAL
®]& SOCIETY

doi 10.1098/rspb.2001.1802

Universality in the brain while listening to music
Joydeep Bhattacharya'® and Hellmuth Petsche’

\Commission for Scientific Visualization, Austrian Academy of Sciences, Sonnenfelsgasse 19/2, A-1010, Vienna, Austria

2Brain Research Institute, Spitalgasse 4, A-1090, Vienna, Austria

The human brain, which is one of the most complex organic systems, involves billions of interacting
physiological and chemical processes that give rise to experimentally observed neuroelectrical activity,
which i1s called an electroencephalogram (EEG). The presence of non-stationarity and intermittency
render standard available methods unsuitable for detecting hidden dynamical patterns in the EEG. In
this paper, a method that is suitable for non-stationary signals and preserving the phase characteristics
and that combines wavelet and Hilbert transforms was applied to multivariate EEG signals from human
subjects at rest as well as in different cognitive states: listening to music, listening to text and performing
spatial imagination. It was found that, if suitably rescaled, the gamma band EEG over distributed brain
areas while listening to music can be described by a universal and homogeneous scaling, whereas this
homogeneity in scale is reduced at resting conditions and also during listening to text and performing
spatial imagination. The degree of universality is characterized by a Kullback—Leibler divergence
measure. By statistical surrogate analysis, nonlinear phase interaction was found to play an important
role in exhibiting universality among multiple cortical regions.
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1. INTRODUCTION

An electroencephalogram (EEG) represents complex
irregular signals that may provide information about under-
lying neuronal activities in the brain. Traditionally, an EEG
1s modelled as a linear stochastic Gaussian process (Nieder-
meyer & Lopes da Silva 1993). However, the brain is intrin-
sically a nonlinear system, so theoretically a more accurate
approach would be to formulate the problem in a nonlinear
framework. The application of concepts from the theory of
nonlinear dynamics (Kantz & Schreiber 1997) to EEG
signals has already provided a number of interesting
attempts (Lehnertz & Elger 1998; Galka 2000). However,
the success of this kind of analysis has mostly been confined
to the prediction and characterization of seizures. The ques-
tion of whether or not the underlying system is deterministic
chaos is still an open one. The presence of different kinds of
noise (measurement noise as well as dynamic noise), the
requirement of huge numbers of data and the inherent non-
stationarity of the signal (Kawabata 1973) make the task of
the detection of low-dimensional chaos in an EEG nearly
insurmountable (Rapp 1993). Therefore, new approaches in
the domain of brain signal analysis are needed, that can
handle the problems of nonlinearity and non-stationarity in
a more efficient way.

Recently, there has been considerable interest (Stanley
et al. 1996, 1999) 1in the application of statistical physics to
physiological signal analysis in attempts to find an expla-
nation for the macroscopic phenomena resulting from the
microscopic interactions among innumerous individual
components. Physiological systems such as the brain are
not in equilibrium, since they are driven by nonlinear
and complex (deterministic as well as stochastic) inter-
actions of many external and internal degrees of freedom.
Efforts have been made (Ingber 1982, 1991; Nunez 2000)
for such systems, which exhibit various phenomena
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arising at different spatio-temporal scales, to study
macroscopic neocortical phenomena such as EEGs by
using a chain of methods dealing with overlapping micro-
scopic and mesoscopic scales. The two most interesting
properties that are relevant in this context are univers-
ality and scaling (Stanley 1971). Universality means that
different systems behave in a very similar way near their
critical points. A critical point is a type of singular point
that is associated with an abrupt change of qualitative
behaviour. Examples are the melting process (where an
ordered phase, such as ice, changes into a disordered
phase, such as water) or the disappearance of ferro-
magnetism above the critical Curie temperature. An
example of universality is the lattice gas analogy between
the behaviour of a single axis ferromagnet and a simple
fluid: their critical exponents are identical near their
respective critical points (Stanley 1999). Scaling implies
that the correlation function obeys a power law (the
correlation C(/) between subunits separated by distance /
follows C()~l=% where ¢ is the critical exponent).
Systems exhibiting the power law are free from any
characteristic length scale, e.g. to some degree they are
invariant under transformations of scale. Many physical
systems exhibiting universal properties are characterized
by fluctuations described by 1/f noise or pink noise, i.e.
the power spectral density 1s inversely proportional to the
frequency. The presence of this kind of power law correla-
tion 1s widespread among diverse complex systems, such
as healthy human heartbeat intervals (Ivanov et al. 1996),
atmospheric variability (Bunde et al. 1998), DNA
sequences (Li et al. 1994), landforms (Turcotte &
Newman 1996) and fossil records (Sole et al. 1997). It has
been shown (Georgelin et al. 1999) that a power law
relationship exists in the pattern of alpha bursts in an
EEG when the eyes are open. 1/f power spectra were also
observed in the alpha band when the eyes were closed for
magnetoencephalogram signals (Chen et al. 1998),
whereas a different scaling was found for EEG data in

© 2001 The Royal Society



2424 J. Bhattacharya and H. Petsche

Universality in the brain while listening to music

similar frequency ranges (Pritchard 1992). However,
finding a power law relationship is not sufficient for char-
acterizing underlying dynamics since power spectrum-
based approaches do not carry the information hidden in
the Fourier phases, which is crucial in determining
nonlinear characteristics.

It is well known that, for cognitive functioning of the
human brain, even if several cortical areas do perform
unique elementary functions, any complex function
requires concerted actions of multiple cortical areas that
are distributed over the entire brain (Bressler 1995).
During cognition, multiple cortical areas may not only
become coactive but also functionally connected; these
functional connections between the cortical areas are
manifested in the EEG in the form of interareal correla-
tion or synchronization. Thus, the detection of this hidden
correlation or synchrony between distant cortical areas
remains an important issue in cognitive neuroscience
(Engel & Singer 2001).

In order to address these problems and to search for a
hidden universality in brain functions, a newly developed
approach called ‘cumulative variation amplitude analysis’
(Ivanov et al. 1996) is employed for analysing spontaneous
EEGs recorded during several cognitive tasks, such as
listening to music, listening to text and spatial imagery.
This method is a combination of the wavelet and Hilbert
transforms and is suitable for the analysis of non-
stationary signals. To the best of the authors’ knowledge,
this study is the first to yield results demonstrating
universality and scaling in the brain in higher cognitive
functioning.

2. MATERIAL AND METHODS

(a) Wavelet transform

It has been pointed out that EEG signals exhibit non-
Traditional
methods, such as short-term Fourier transform and Gabor trans-

stationary and extremely complex behaviour.
form, are not suitable for localizing the transient and patchy
features of EEG signals. The following method was therefore
used for circumventing this problem. First, wavelet transform 1is
applied to the raw EEG signal; this is a method of signal
decomposition onto a set of basis functions that are obtained by
dilations, contractions and translations of a unique function
called the mother wavelet. Given the input signal x(), the
continuous wavelet transform (Kaiser 1994) is defined as

Xowr(ah) = / *()pl (), 2.1)

o)

where the asterisk denotes complex conjugation, a is a scaling
factor and b is time. The 1, ,(f) term is obtained by scaling the
mother wavelet ¥ (f) at time b and with scaling factor a, 1.e.

vl =20 (50),

It is noteworthy that, when a becomes large, the basis function

(2.9)

¥, becomes a stretched version of the mother wavelet, which
can be useful for analysis of the low-frequency components of
the signal. On the other hand, when the scale factor is small,
the basis function will be contracted, which is useful for
capturing the high-frequency components of the signal. The
normalization (I/Ja) is performed for energy preservation.
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Thus, the dominant frequency of the wavelet-transformed signal
depends on the choice of . An EEG signal is generally a broad
band signal, but is usually divided into five different frequency
bands (the delta (< 4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta
(13-30Hz) and gamma (> 30 Hz) bands) that reflect function-
ally different components of information processing, from
sensory perception to memory operation (Petsche & Etlinger
1998). In this study most emphasis is put on the gamma band,
since there is evidence that neuronal oscillations and synchroni-
zation in the 30-70 Hz range in multiple cortical areas provide
a general framework for large-scale cognitive integration
(Singer & Gray 1995; Rodriguez et al. 1999). In this study, the
scale factor a =2 guarantees the signal Xqywr (@,6), which mostly
contains gamma oscillation.

The Morlet wavelet (Kaiser 1994) is chosen as the mother
wavelet, which consists of a plane wave modulated by a Gaussian,
ie.

P(0) = "Bl 2, (2.3)

The term w; is a numerical constant, which is particularly
suitable for frequency characterization and offers a good
compromise between frequency and time resolution. In this
study wy=135.5, which fulfils the admissibility condition (Kaiser
1994). Three important properties make wavelet transform
suitable for EEG analysis: (i) it removes the local polynomial
trend, (i) it is suitable for non-stationary signals, and (iii) it
preserves the Fourier phase information.

(b) Hilbert transform

Next, the envelope of the wavelet-transformed EEG signal is
extracted through an analytic signal approach (Cohen 1995;
Bendat & Piersol 2000), which does not require the condition of
stationarity. The analytic signal is formed as follows:

. 1 [T xewr (1)
Ko (8) =xcwr (£) + 22, (1) =xcwr () + (o ﬁd'ﬂ (2.4)

where xy, () is the Hilbert transform of xqyy(f) and the integral is
summed up in the sense of its Cauchy principal value. Since the
analytic signal is a complex quantity, it can be decomposed into a
n) =40 Y where () (=¥ qwr)
+x2(#)) is the instantaneous amplitude or envelope and ¢(f)

polar form, ie. X,
(=tan~ (x, (0) Jxgw () is the instantaneous phase.

Further, the probability distribution function (PDF) P(y) of
A(t) 1s studied. The whole procedure is repeated for all of the 19
EEG channels used in this study and a set of 19 PDFs is finally
obtained.

(¢) Universality

In order to test the hypothesis that there is a hidden, possibly
universal structure in these multivariate time-series obtained
from different spatial locations over the scalp, each individual
PDF is rescaled as follows: P(») by P, and y by 1/P,

P .« 1s the maximum of P( ). If there is hidden universality in

max max Where
the different brain areas, the 19 rescaled PDFs collapse into a
single PDF and the whole set can be described by a single homo-
geneous scaling parameter. This kind of data collapsing of PDFs
is also found in a wide class of physical systems with universal
scaling properties. Thus, whenever different PDFs converge into
a single PDF after being properly rescaled, the underlying
hidden universality can be assumed. The collapse of PDFs is an
important property of generalized homogeneous functions
(GHFs) (Gel'fand & Shilov 1964). A function flx, j,...) is called
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homogeneous of degree m if f(/x,Ay...) =A"flx,»...) for any
positive scalar multiplier 4. The same function can be called a
GHYF if we can find a set of numbers p, ¢, . . ., that are not all
zero such that f(A%x, 2%,...) = Afl, 3. ..). This type of function is
typically investigated in the context of thermodynamic func-
tions, static correlation functions, dynamic correlation functions
and universality near the critical points of phase transitions
(Stanley 1971). In the domain of physiological signal analysis, it
has been found (Ivanov et al. 1996) that the heartbeat interval
in healthy subjects can be described by a GHF reflecting
universal scaling, whereas universality was destroyed for
subjects with cardiopulmonary instability caused by sleep
apnoea. In another study (Bhattacharya et al. 2000), the alpha
waves of EEG signals were decomposed into regular and
irregular components based on the presence of a dominant oscil-
lation. A similar kind of universality was found for the regular
components in the occipital area of healthy subjects, whereas
subjects with seizure and mania failed to display this behaviour;
no difference was found for the irregular components. Thus, it
seems worth probing whether such universal scaling properties
displayed by complex systems at the points of their phase transi-
tion can also be found in the brain while being involved in
higher cognitive functioning.

(d) Kullback-Leibler divergence

Since we are dealing with real-life EEG signals, the prob-
ability of observing a perfect data collapsing phenomenon is low.
In practical terms, for a case with strong data collapse the
rescaled PDFs are similar and clustered together and for weaker
data collapse the PDFs are more dissimilar and spread. The
(Kullback 1997),
originally proposed to measure the difference between two

Kullback—Liebler divergence which was
PDFs, is used to characterize the similarity (or dissimilarity) of
the rescaled PDFs in order to assess the degree of universality.
Let us say that P; (={p;(k)}, where k=1, ..., M, where M is
the number of bins) and P; (:{p](k)}) be the two different
scaled PDFs associated with the ith and jth electrodes. Then the
Kullback—Liebler divergence is defined as

(k
KGlj) = S pih) 12% (2.5)
k J

This measure can be considered as a kind of distance between
the two PDFs, though it is not a real distance measure because
it is not symmetrical (equality only holds when the two distribu-
tions are identical, leading to A'=0). The general interpretation
of this measure is as follows: assume that P; is the original distri-
bution but that P; is used for encoding; then A7) indicates the
length of excess codes (measured in bits) over the shortest length
of code (using the original distribution P;) in the process of
encoding. Similar analogous interpretation can be deduced for
K(jl7). In the present context, the lower the values of K'(z]7) or
K(yl7), the lower the difference between the two distributions
and the higher the degree of correlation between associated
electrode regions. Thus, the average value of K|y, ¢|) (where
J#t and ,j=1, ..., 19) approximately quantifies the degree of
the underlying universality: strong data collapsing produces low
divergence and weak data collapse or spread PDFs leads to
higher divergence. The Kullback—Liebler divergence measure
has previously been used in clinical neurophysiology for
classifying the level of anaesthesia (Gersch et al. 1979) and for
the detection of seizures (Quiroga et al. 2000).
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(e) Nonlinearity

Further, for exploring whether this scaling behaviour is indeed
an intrinsic property of the brain dynamics associated with
cognitive tasks, the method of surrogate data (Theiler et al. 1992;
Schreiber & Schmitz 2000) is applied. The analysis with surro-
gate data involves a null hypothesis on which the surrogate
generator is based. Here, the null hypothesis is that the signal has
been generated by a linear, Gaussian, stochastic dynamical
process. This process is observed through a measurement function
that is instantaneous, invertible, static and time invariant. It may
be noted that the system in this class is strictly speaking nonlinear
(and non-Gaussian), but that the nonlinearity (and non-
Gaussianity) is not in the true dynamics but in the observable
process. These surrogates have the same mean, variance, auto-
correlation and cross-correlation properties as the original signal
(Prichard & Theiler 1994). First, a random series {r(k)} of the
same length as the original EEG signal {x(k)} is sorted such that
the numerical order of both the series agree. Then Fourier trans-
form is taken on the reordered random series: the Fourier phases
of the series are randomized while preserving the Fourier ampli-
tude and the inverse Fourier transform is performed in order to
obtain {r/ (k)}. The same randomization is applied to the Fourier
phases of all 19 signals in order to preserve the cross-correlation
properties between EEG signals. The surrogate is finally obtained
by reordering {x(k)} so that the numerical ranks of its elements
agree with those of {ﬂ(k)}. In this study, 100 surrogates were
generated for each channel and their PDFs of the instantaneous
amplitude of the wavelet transform using the same scale (@) are
compared with the corresponding PDFs of the original signal. If
the PDF of the original data is significantly different from that of
the surrogates, one can reject the associated null hypothesis of
linearity.

(f) Procedure

In this study, 20 male subjects with a mean age of 25.5 years
were chosen. They were instructed to listen to a piece of classical
music (the Gigue of the French Suite Number 5 for harpsichord,
by J. S. Bach) for several minutes using earphones and to a text
of neutral content (a short story called Versuendigung gegen die
Nachwelt by H. Weigel read by C. Hoerbiger over 2min). In
addition, the subjects were asked to perform a spatial imagina-
tion task, which involves mental rotation of figures (Shepard &
Metzler 1971; Bhattacharya et al. 2001). Their EEG signals were
recorded from 19 gold-cup electrodes that were equally distri-
buted over the scalp according to the so-called 10-20 system
(figure 1) with respect to the averaged signals from both ear
lobes. The sampling frequency was 128 Hz. Periods of EEGs at
rest (with eyes open and eyes closed) were recorded before,
between and after each task. Their durations were the same as
those of the tasks. The subjects’ eyes were closed while listening
to the music and text.

3. RESULTS

The span of the chosen segments of the EEGs for every
task is 90 s. The EEG signal from electrode O2 (right occi-
pital) from a subject (Vp. 632) listening to music and its
wavelet transform are shown in figure 2a,b, respectively.
The scale (@ in equation (2.2)) is chosen as 2 so that it
emphasizes the high-frequency components containing
hidden dynamical patterns in the gamma band, which
might be crucial for cognitive integration. The instanta-
neous amplitude or the envelope of the wavelet transform
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Figure 1. Location of the 19 electrodes and their designations
according to the standard 10-20 electrodes placement system
(Jasper 1958). The electrodes are numbered as 1-19.

1s displayed in figure 2¢. This envelope measures the cumu-
lative variations in the EEG signal over an interval propor-
tional to the scale a. The power spectra of the wavelet-
transformed signal for the 19 electrodes are plotted in
figure 2d. As expected, the dominant spectral power 1is
found in the gamma band at 30-50 Hz where peaks are
found at around 40 Hz. Interestingly, a small peak in the
alpha band is still present even for this chosen scale.
Similar profiles of the gamma band power spectra are
obtained for the other two cognitive tasks: listening to text
and performing spatial imagination.

(a) Data collapse

Next, we studied the distributions (P()) of the instan-
taneous amplitudes of the wavelet-transformed (with
scale a=2) EEG signals, that were recorded simulta-
neously from the different spatial positions that were
equally distributed over the scalp. Figure 3a—c¢ shows sets
of PDFs for the same subject that were obtained during
listening to music, listening to text and spatial imagina-
tion, respectively. At first inspection, the distribution
functions of the 19 electrodes reveal marked differences in
all three tasks. Apparently, these differences reflect
different ongoing activities in various cortical regions in
the gamma frequency range during each task. In order to
explore hidden universal features, each individual PDF is
rescaled as described in § 2c. This rescaling is done while
normalizing the area to unity. The data points collapse
into a single curve or cluster together (figure 3d). This
kind of data collapsing behaviour is seen in diverse
complex systems with universal scaling properties. On the
other hand, during spatial imagination, the set of PDFs
fails to collapse into a single curve even after being
suitably rescaled (figure 3f). The collapsing of PDFs
while listening to text is in between these two tasks. Thus,
a common scaling function exists in the gamma frequency
range over the entire cortex while listening to music, but
there is a wide variation in scaling values within brain
areas during spatial imagination.

In order to determine whether this property of univers-
ality and scaling has anything to do with listening to
music, a similar study has also been performed for EEGs
at rest (eyes open and eyes closed). No strong data
collapse or dense clustering of PDI's was found for resting
states. Thus, this provides the first hint that some

Proc. R. Soc. Lond. B (2001)

(@)
x 10*
2
=
=]
5
S
3000
= 2000
= 1000
0
t(s)
(d)
s 60
m
=
Q 40
E v
R=
& 20
g
g
= 0
3
&
5 -20
2
2
—40
0 20 40 60
frequency

Figure 2. (a) Plot of 90s of EEG obtained from the right
occipital electrode (O2) from a subject (Vp. 632) while
listening to music. Non-stationary segments can be found on
close inspection of the signal. () Wavelet transform (with
scale a =2) of the signal in (a). (¢) The instantaneous
amplitude of the wavelet-transformed signal in (). (d) Power
spectral densities of the wavelet-transformed signal for 19
electrodes. Although the power is mostly confined to the
gamma band due to the choice of low value of scale, lower
frequency components in the alpha range are still visible.

cognitive tasks involving higher information processing,
for example, listening to music, are associated with a
universal behaviour even among distant brain areas.

(b) Degree of universality

In order to quantify the degree of collapsing of PDFs
that approximately characterizes the degree of uni-
versality, the Kullback—Leibler divergence measure is
calculated for the set of 19 rescaled PDFs. Figure 4 shows
the profiles of the Kullback—Leibler divergences in the
gamma frequency range averaged over the 20 subjects and
over all possible combinations of each electrode for each
position for the cognitive states, i.e. listening to music
(solid line), listening to text (open diamonds) and
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Figure 3. (a—<) The probability distributions P( y) of the instantaneous amplitudes of the gamma band for all 19 electrodes that
were obtained while listening to music, listening to text and performing the task of spatial imagination, respectively, for the

same subject as in figure 2. Differences between individual PDFs are evident in the first two moments (mean and standard
deviation) of these distributions. (¢—f) Similar sets of PDFs as in (a—) but after rescaling each distribution as follows: the ordinate
by P( »)/P . and the abscissa by pP, .., where P, is the maximum of P( »). The strongest collapse of the 19 PDFs is found in

(d) while listening to music. No data collapse is found during spatial imagination.
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Figure 4. Degree of data collapsing in the gamma band as measured by the mean Kullback-Leibler divergences (M.K.L.) in
different states: eyes closed (dashed-dotted line), eyes opened (dashed line), listening to music (solid line), listening to text (open
diamonds) and performing spatial imagination (asterisks). The results are averaged over 20 subjects and for all possible
combinations for each electrode. Data collapsing (low values of the mean Kullback-Leibler divergence) is strongest while
listening to music in the cortical regions associated with the midline electrodes. The temporal electrodes (T3 and T4) produce
the highest divergence, which is most probably due to electromyographic contamination.

performing spatial imagination (asterisks) and the resting  the highest divergence from other electrode regions; this is
states, 1.e. with eyes opened (dashed line) and with eyes  most probably due to interference of muscle activities with
closed (dashed-dotted line). The two peaks, which are  the gamma band. The lowest profile with the lowest degree
associated with temporal electrodes T3 and T4, represent  of divergence or the strongest degree of data collapsing is
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Figure 5. Numerical fit (solid line) of the rescaled PDF's of the
amplitudes of the analytic signal of the wavelet transform in
the gamma frequency range with the I'-function (o =1.25) for
the same subject as in figure 2 while listening to music. Dotted
lines represent the rescaled PDFs of the 19 electrodes.

found while listening to music. The midline electrode
regions showed the strongest correlations with other elec-
trode regions. Data collapsing is weakest while performing
spatial imagination. Table 1 lists the values of significance
(paired Wilcoxon test) obtained through comparison
between the cognitive tasks and resting states and also
between pairs of cognitive tasks. The midline electrode
regions (Fz, Cz and Pz) and their close bilateral neigh-
bours are found to be significant while listening to music

10°

Fpl Fp2
F7F3szpF4 F8
(| 3c3czcaTs |)
T5 P3 Pz P4 14
o1 02

as compared with the eyes closed condition. On the other
hand, listening to text does not show any significant
increase in collapsing with respect to the resting state.
Since the subjects’ eyes were opened during spatial imagin-
ation, it is compared with the respective resting state, i.e.
eyes open; data collapsing was reduced in the frontal
regions (F7, F3 and Fz) during this task. If the Kullback—
Leibler measures while listening to music are compared
with the Kullback—Leibler measures while listening to text
or during spatial imagination, the multiple electrode
regions show a highly significant increase in data collap-
sing behaviour for the former task. Thus, universality
while listening to music as represented by the strongest
data collapse is the highest among all tasks chosen in this
study.

(c) Fit of GHF

Next, these PDFs are described by a GHF of the form
(Ivanov et al. 1996; Kaipio & Karajalainen 1997)
P(y,2) =" ye? (0 + 1), (3.1)
where 2=/, 1s the position of the maximum value of
P, I'(c+1) 1s the gamma function and o is the fitting
parameter. P is also a GHF for p= —1 and ¢=1 (see §2c
for details). The family of curves obtained for this kind of
function for different values of z falls into a single curve
after rescaling as P(u) =P(nz)/z, where p=yz; this

0 5 10

10

0 5 10

Figure 6. Rescaled probability distributions (in the semi-log scale) of the instantaneous amplitudes of the wavelet transform (scale
a = 2) of the original (solid line) EEG signal for 19 electrodes for one subject (Vp. 611) while listening to music and the PDFs for
100 surrogate signals (dotted line). The long tail of the original PDFs in the parietal and occipital regions is absent in the PDFs of
their surrogates, indicating significant non-random phase correlations. The electrodes’ locations are shown at the top of the figure.

Proc. R. Soc. Lond. B (2001)



Universality in the brain while listening to music ~ J. Bhattacharya and H. Petsche

2429

Fpl Fp2
F7 F3 Fz F4 F8

(| T3C3CczcaTs ]
T5 P3 Pz P4 1¢
o1 02

0 5 10

0 5 10

Figure 7. Rescaled probability distributions (in the semi-log scale) of the instantaneous amplitudes of the wavelet transform
(scale @ = 2) of the original (solid line) EEG signal for 19 electrodes for one subject (Vp. 611) during spatial imagination and the
PDF's for 100 surrogate signals (dotted line). The frontopolar and frontal regions show PDFs significantly different from those of
their surrogates, indicating significant non-random phase correlations.

phenomenon, which is known as data collapse, is
mentioned earlier (see § 2¢). If data collapse is found, the
family of distribution functions can be represented by a
single scaling function P(p), which characterizes the
entire brain. Figure 5 shows the analytic fit of the PDF
while listening to music with the above GHF function for
the same subject (Vp. 632). Another measure for quanti-
fying the collapsing of PDFs in different tasks can be the
sum of the absolute differences between individual PDFs
and the analytical fit. The higher the value of this index,
the greater the spread of the overall distribution for the
associated task. This index has been found to be lowest
while listening to music.

(d) Nonlinearity

Figure 6 shows a comparison with surrogates for the 19
EEG signals of another subject (Vp. 611) while listening
to music; the same comparison is displayed in figure 7 for
spatial imagination. If the long tail of the distribution of
the original signal cannot be reproduced by the surro-
gates, then the phase correlations in the original signal
can be claimed to be non-stochastic. This temporal corre-
lation in the Fourier phase sequence is a sign of nonlinear
coupling in associated cortical areas. Several electrodes in
the posterior regions of the scalp (Cz, P3, Pz, T6, Ol and
0O2) show significant differences from their surrogates.
During spatial imagination, these electrode regions do

Proc. R. Soc. Lond. B (2001)

not show any significant difference from their surrogates,
whereas the frontopolar and frontal regions (Fpl, Fp2,
F7, F4 and F8) do. After repeating the study for all 20
subjects, it has been found that the posterior regions show
consistently significant nonlinear characteristics while
listening to music, whereas during spatial imagination the
frontopolar regions present significant nonlinear charac-
teristics. Thus, through this procedure, by preserving the
linear properties of the original signal, one is able to trace
the nonlinear signature hidden in the collective phase
properties of the gamma band, which otherwise would
pass unnoticed in the conventional analysis based on
Fourier power spectrum.

(e) Other frequency bands

Universality and data collapsing were also studied for
other frequency bands, i.e. the theta, alpha and beta
bands, with scaling parameters (¢ in equation (2.2)) of
18, 8 and 5, respectively. The centre frequencies of the
dominant bands in these ranges are 20.8, 10 and 6 Hz,
respectively. Figure 8 shows the mean Kullback—Leibler
divergence measures for individual electrodes for the
three cognitive tasks. Several points are noteworthy. First,
the Kullback—Leibler divergence measure is lower for
higher frequencies, thus there might exist some correla-
tion between the degree of data collapsing and frequency.
Second, the topographical profiles for listening to music
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Figure 8. Degree of data collapsing as measured by the mean Kullback-Leibler divergence measure (M. K. L.) in the () beta,

(b) alpha and (¢) theta bands. Three cognitive tasks are considered: listening to music (solid line), listening to text (open diamonds)
and performing spatial imagination (asterisks). The results are averaged over 20 subjects and for all possible combinations for each
electrode. The data collapsing in the beta band is higher (lower values of mean Kullback-Leibler divergence) while listening to
music than while listening to text, but the differences between the two listening tasks are not evident in the other frequency bands.

Table 1. Electrodes at which a significant decrease in the Kullback-Leibler divergence measure between the
cognitive tasks and resting conditions as well as between different cognitive tasks can be observed in the gamma band.

(A dash indicates that the value is non-significant. Non-parametric Wilcoxon test for matched pairs, “0.01 <p<0.05,
*0.001<p<0.01, **p<0.001. A minus (—) sign preceding an asterisk mark indicates a significant increase in the
Kullback-Leibler divergence measure.)
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and for listening to text are similar (Pearson’s correlation
coefficient, »=10.779£0.08) in different frequency
bands. Third, listening to music does not produce the
lowest degree of data collapsing among the chosen cogni-
tive tasks in other frequency bands. Finally, during spatial
imagination, a steep increase in divergence measure is
found in the posterior electrodes in the theta band. Long-
range interaction between occipital and prefrontal elec-
trodes has been reported while performing spatial tasks
(Sarnthein e al. 1998); whether this fact has anything to
do with this strong increase in the divergence measure
demands further attention.

4. DISCUSSION

The results obtained here by methods of modern
statistical mechanics for understanding complex cognitive
information processing in the brain seem to be promising.
First, the applied method, which acts as a ‘mathematical
microscope’ (Ivanov et al. 1996), is suitable for the analysis
of non-stationary signals. Second, it detects the hidden
universality and scaling features. It has been found that,
while listening to music, different brain areas, albeit physi-
cally far apart, possess a universal and homogeneous
scaling. It has also been shown that the degree of univers-
ality is strongest in the high-frequency gamma band while
listening to music. The role of the gamma band in
cognitive processing is a matter of intense interest within
the conceptual framework of temporal coding theory and
the binding hypothesis (Singer 1993; Tallon-Baudry &
Bertrand 1999). System-level studies have revealed that the
different features of stimuli are signalled in separate sets of
primary afferent fibres and that the resulting neuronal
activity is expressed in spatially separate areas of the
cortex that are linked to large-scale distributed systems.
This distributed representation hypothesis requires
processes for linking the separate nodes of activity, thereby
allowing identification of the object as a whole. It has been
proposed by many researchers (Crick & Koch 1990;
Singer & Gray 1995; Von der Malsburg 1995) that the
linking mechanism is the oscillations in the gamma band
and synchronization of neurons in distributed populations.
The existence of long-range correlation in the gamma
band between multiple cortical areas reflected by the
presence of universality and data collapsing phenomena
while listening to music supports the putative role of the
gamma band in higher cognitive functioning.

The most important information for different systems
belonging to the same universal class does not depend on
the details of their microscopic interactions, but rather on
the nature of the paths along which a hidden order is
distributed between different distant subunits. This
behaviour is reminiscent of the characteristics of physical
systems at their critical points of phase transition.
Cortical areas possessing significant nonlinear phase
correlations can be identified with the help of statistical
analysis based on surrogate data.

The beauty of universality is that the underlying
system is poised at its critical point and the interactions
across even distant subunits propagate
throughout the entire system, out of which long-range
correlation emerges. It is argued (Stanley et al. 1996) that,
although the correlations decay exponentially along each

extensively
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path, the number of such paths also increases exponen-
tially. Power law scaling appears primarily out of this
competition from the multiplicity of interaction paths
connecting neural assemblies in higher dimensions. In the
resting state, when there is no apparent information
processing involved, the absence of universality implies a
lack of coordination among several cortical areas. It can
be conjectured that, while listening to music, because of
the way in which correlation among even distant neural
assemblies spreads and the competition between them
becomes stronger in order to accomplish the cognitive
task, the entire system is pushed to the brink of the
critical point where ‘everything depends on everything
else’ (Edelman & Tononi 2000, p. 113).

There are a few more points that need further discussion.

(1) Among the classical frequency bands, the gamma
band is most prone to muscle activities, but this
contamination only has a major affect at temporal
electrodes (T3 and T4), whereas no significant differ-
ences are found at these electrodes (see table 1), yet
several other electrode regions produced significant
differences while listening to music. Thus, the
possible contribution of muscle activity to our results
of universality in the gamma band while listening to
music can be ruled out.

(i1) In this paper, we restricted ourselves to studying the
instantaneous amplitude variations in different
frequency bands, whereas the information in instant-
aneous phase coupling was not considered. In a
parallel study, we have already shown that the
degree of long-range gamma band synchrony was
found to be significantly higher in musicians than
non-musicians while listening to music, but not while
listening to text (Bhattacharya & Petsche 2001).

(1i1) Although the method of surrogate data has been
used here for indicating significant temporal phase
correlation, there can be some problems associated
with the surrogate data, which need further attention
(Schreiber & Schmitz 2000; Timmer 2000).

(iv) One may ask whether the data collapsing as shown
here can be detected by some simpler methods
instead of using a combination of wavelet and
Hilbert transformations. However, we found that
direct analysis of a band pass-filtered EEG signal
histogram does not lead to data collapse, nor can the
direct application of the Hilbert transformation of
the original signal reproduce a hidden universality.
Thus, the crucial role of the combined methods for
extracting hidden dynamical properties embedded in
the EEG signal is justified.

(v) In this paper, the importance of the underlying
universality has only been addressed qualitatively.
Theoretically, universality can be produced by the
trajectories of two systems, the local manifolds of
which have similar Jacobians near their critical
points, and an important issue is how close the two
systems are to their respective critical points.
Although we have tried to quantify the degree of
data collapsing phenomena (a characteristic of
universality) by the Kullback—Leibler divergence
measure, the direct proof of the closeness to the
critical point is beyond our scope because scalp
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recordings do not allow the active neural source to
be directly localized, so we cannot be sure whether
the gamma band activity at any specific electrode
region is generated exclusively within the underlying
cortical area.

Thus, in the application of an EEG as an instrument in
cognitive research these results give rise to at least two
inferences: (i) whenever studying thinking processes by
means of an EEG, it has to be considered that any local
findings should not be interpreted as only being due to
the wunderlying local morphological and functional
properties, but have to be seen as the involvement of the
global brain in this act of thinking, and (ii) that different-
1ating between linear and nonlinear characteristics of the
system ‘brain’ may yield new insights into the electrical
nature of thinking processes and, thus, assist in the inter-
pretation and understanding of higher cognitive acts.
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